مجلة العلوم التربوية والاجتماعية

مقارنة دقة مؤشرات الملائمة الكلية للتحليل العاملي التوكيدي في ضوء اختلاف تعقيد النموذج وحجم العينة وشكل توزيع البيانات وطريقة تقدير المعالم

Comparing the Accuracy of Overall Fit Indices for Confirmatory Factor Analysis based on the Factors of Model Complexity, Sample Size, Data Distribution, and Estimation Method.

د. عبد الرحمن بن عبد الله النفيعي
أستاذ القياس والتقويم المشارك
قسم علم النفس - كلية التربية - جامعة أم القرى
Dr. Abdulrahman A. Alnofei
Associate Professor of Psychological Measurement and Evaluation
Department of Psychology - Faculty of Education - Am ALqura University

التخصص العام: علم النفس

التخصص الدقيق: القياس والتقويم

DOI: 10.36046/2162-000-020-001
DownloadPDF
الملخص
هدفت الدراسة إلى مقارنة دقة مؤشرات الملائمة الكلية للتحليل العاملي التوكيدي المتمثلة في: X2، RMSEA، SRMR، CFI، TLI، AGFI في ضوء مستويات درجة تعقيد النموذج (بسيطة، ومتوسطة، وكبيرة)، وأحجام عينة (200، 500، 750)، وشكل توزيع البيانات (اعتدالي، وملتوي التواء سالبا، وموجبا) وطرق تقدير المعالم (ML، WLSMV، USL). ولتحقيق ذلك تم تصميم دراسة محاكاة من خلال تصميم بحثي عاملي متقدم تم خلاله ضبط المتغيرات وفقاً للشروط السابقة. وقد أظهرت النتائج دقة جميع مؤشرات الملائمة الكلية الست عندما تكون درجة تعقيد النموذج بسيطة، أو عندما يكون حجم العينة صغير، أو عندما يتبع توزيع البيانات التوزيع الاعتدالي، أو عند استخدام أي طريقة من طرق تقدير المعالم الثلاثة. لكن عندما تكون درجة تعقيد النموذج متوسطة، أو عندما يكون حجم العينة متوسطا أو كبيرا فمؤشرات RMSEA، وSRMR، وCFI، وTLI الأكثر دقة، أما عندما تكون درجة تعقيد النموذج كبيرة، أو عندما يكون شكل توزيع البيانات ملتوي التواءً سالباً أو موجباً فمؤشري RMSEA، وSRMR الأكثر دقة. 
الكلمات المفتاحية: مؤشرات الملائمة الكلية للتحليل العاملي التوكيدي، تعقيد النموذج، حجم العينة، شكل توزيع البيانات، طرق تقدير المعالم المجهولة.

This study compared the accuracy of six overall fit indices for Confirmatory Factor Analysis (CFA): X2, RMSEA, SRMR, CFI, TLI, and AGFI. The comparison was based on four factors: model complexity (simple, medium, and large), sample size (200, 500, and 750), data distribution (normal, negative, and positive skewness), and estimation methods (ML, WLSMV, and USL). A simulation study was conducted using an advanced factorial research design to manipulate these factors. The findings indicated that all six fit indices were accurate for simple models, small samples, normal data, and any estimation method. For moderate models or medium to large samples, RMSEA, SRMR, CFI, and TLI were the most accurate fit indices. For large models or skewed data, RMSEA and SRMR were the most accurate fit indices.

Keywords: overall fit indices for confirmatory factor analysis, model complexity, sample size, data distribution, methods for estimating unknown parameters.


مراجع
المراجع العربية:
تيغزة، أمحمد بوزيان. (2012). التحليل العاملي الاستكشافي والتوكيدي مفاهيمهما ومنهجيتهما بتوظيف حزمة SPSS وليزرل LISREL. دار المسيرة للنشر والتوزيع.
الجضعي، خالد بن سعد (2005). تقنيات صنع القرار: تطبيقات حاسوبية. دار الأصحاب للنشر والتوزيع.
عامر، عبدالناصر السيد. (2004). أداء مؤشرات حسن المطابقة لتقويم نموذج المعادلة البنائية. المجلة المصرية للدراسات النفسية، 14، 45.
   http://search.mandumah.com/Record/1008703
عامر، عبد الناصر السيد. (2014). تقييم استخدام تطبيقات نمذجة المعادلة البنائية في البحث النفسي. مجلة دراسات عربية في علم النفس (رانم)، 13، 2.
  http://search.mandumah.com/Record/700164
عامر، عبدالناصر السيد. (2018). نمذجة المعادلة البنائية للعلوم النفسية والاجتماعية: الأسس والتطبيقات والقضايا (الجزء الأول). دار جامعة نايف العربية للعلوم الامنية للنشر
عامر، عبد الناصر السيد. (2018). نمذجة المعادلة البنائية للعلوم النفسية والاجتماعية: الأسس والتطبيقات والقضايا (الجزء الثاني). دار جامعة نايف العربية للعلوم الامنية للنشر.
عامر، عبدالناصر السيد. (2022). تحليل النماذج البنائية باستخدام برنامج LISREL: SIMPLIS & PRELIS"" : https//www.amazon.com/dp/B098p7CGVK

ترجمة المراجع العربية:

Al-Jadha’i, Khalid bin Saad (2005). Decision-making techniques: computer applications. Dar Al-Ashab for Publishing and Distribution.

Amer, Abdel Nasser Al-Sayed. (2004). Performance of goodness-of-fit indicators to evaluate the structural equation model. Egyptian Journal of Psychological Studies, 14, 45. http://search.mandumah.com/Record/1008703

Amer, Abdel Nasser Al-Sayed. (2014). Evaluating the use of structural equation modeling applications in psychological research. Journal of Arab Studies in Psychology (RANM), 13, 2.

 http://search.mandumah.com/Record/700164

Amer, Abdel Nasser Al-Sayed. (2018). Structural equation modeling for the psychological and social sciences: foundations, applications, and issues (Part One). Naif Arab University for Security Sciences Publishing House.

Amer, Abdel Nasser Al-Sayed. (2018). Structural equation modeling for the psychological and social sciences: foundations, applications, and issues (Part II). Naif Arab University for Security Sciences Publishing House.

Amer, Abdel Nasser Al-Sayed. (2022). Analysis of structural models using LISREL program: SIMPLIS & PRELIS.

Tigza, Amohamed Bouziane. (2012). Exploratory and confirmatory factor analysis, their concepts and methodology, using SPSS and LISREL package. Dar Al Masirah for Publishing and Distribution.

المراجع الأجنبية:

Aera, A. P. A. (1999). Standards for educational and psychological testing. American Educational Research Association.

Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness of fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155–173

Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155-173.

Bandalos, D. L., & Finney, S. J. (2018). Factor analysis: Exploratory and confirmatory. In The reviewer’s guide to quantitative methods in the social sciences, 98-122 . Routledge.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological bulletin, 107(2), 238.

Bentler, P. M. (1995). EQS structural equations program manual (Vol. 6). Encino, CA: Multivariate software.

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-606.

Bollen, K. A. (1990). Overall fit in covariance structure models: Two types of sample size effects. Psychological Bulletin, 107, 256?259

Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S. du Toit, & D. S?rbom (Eds.), Structural equation models: Present and future. A Festschrift in honor of Karl J?reskog (pp. 139–168). Chicago: Scientific Software International.

Breivik, E., & Olsson, U. H. (2001). Adding variables to improve fit: The effect of model size on fit assessment in LISREL. Structural equation modeling: Present and future, 169-194.

Brown, T. A. (2006). Confirmatory Factor Analysis for Applied Research. New York, NY: The Guilford Press.

Browne, M. W. (1984). Asymptotic distribution free methods in the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62?83.

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136?162). Newbury Park, CA: Sage.

Byrne, B. m. (2001). Structural equation modeling with AMOS, EQS, and LISREL: Comparative approaches to testing for the factorial validity of a measuring instrument. Int. J. Testing, 1, 55-88.

Chau, H., & Hocevar, D. (1995, April). The effects of number of measured variables on goodness- of-fit in confirmatory factor analysis (Paper presented). at the annual conference of the American Educational Research Association, San Francisco

Ding, L., Velicer, W. F., & Harlow, L. L. (1995). Effects of estimation methods, number of indicators per factor, and improper solutions on structural equation modeling fit indices. Structural Equation Modeling, 2, 119–144.

Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23-74.

Fan, X., Thompson, B., & Yang, L. (1999). Effects of sample size, estimation methods, and model specification on structural equation modeling fit indices. Structural Equation Modeling, 6, 56–83.

Hair, J. F., Gabriel, M., & Patel, V. (2014). AMOS covariance-based structural equation modeling (CB-SEM): Guidelines on its application as a marketing research tool. Brazilian Journal of Marketing, 13(2).

Hu, L., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues and applications (pp. 76–99). Thousand Oaks, CA: Sage.

Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure analysis: Sensitivity under parameterized model misspecification. Psychological Methods, 3, 424- 453.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis. Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1- 55.

Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351?362.

Jackson, D. L. (2003). Revisiting Sample Size and Number of Parameter Estimates: Some Support for the N: q Hypothesis. Structural Equation Modeling, 10, 128–141

Jackson, D. L., Gillaspy, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14, 6-23.

Joreskog, K. G., & Sorbom, D. (1989). LISREL 7: User’s Reference Guide. Chicago, IL: Scientific Software.

Kaplan, D. (2000). Structural equation modeling: Foundation and extensions. Thousand Oaks, CA: Sage Publications.

Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The performance of RMSEA in models with small degrees of freedom. Sociological Methods & Research, 44(3), 486–507. https://doi.org/10.1177/0049124114543236

Kenny, D. A., & McCoach, D. B. (2003), "Effect of the Number of Variables on Measures of Fit in Structural Equation Modeling," Structural Equation Modeling, 10, 333-51.

 

Kline, R. K. (2016). Principles and practice of structural equation modeling (4th.ed). New York: Guilford publications, Inc.

Lord, F., & Novick, M. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley

Marsh, H. W., Balla, J. R., & Hau, K. T. (1996). An evaluation of incremental fit indices: A clarification of mathematical and empirical properties. Advanced structural equation modeling: Issues and techniques, 315-353.

Marsh, H. W., Hau, K. T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indictors per factors in confirmatory factor analysis. Multivariate Behavioral Research, 33, 181–222.

McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological methods, 7(1), 64.

McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness of fit. Psychological Bulletin, 107, 247–255.

McQuitty, S. (2004), "Statistical power and structural equation models in business research,". Journal of Business Research, 57, 175-83

Moshagen, M. (2012). The model size effect in SEM: Inflated goodness-of-fit statistics are due to the size of the covariance matrix. Structural Equation Modeling: A Multidisciplinary Journal, 19, 86-98.

Mulaik, S. A., Jams, L. R., Alstine, J. V., Bonnett, N., lind, S., & Stilwell, D. C. (1989). Evaluation of goodness of fit indices for structural equation models. Psychological Bulletin, 105, 430-445.

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 4, 599?620.

Muthén, L. K., & Muthén, B. O. (2012). 1998–2012. Mplus user’s guide. Los Angeles: Muthen & Muthen.

Mvududu, N. H., & Sink, C. A. (2013). Factor analysis in counseling research and practice. Counseling Outcome Research and Evaluation, 4(2), 75-98.

Prudon, P. (2015). Confirmatory factor analysis as a tool in research using questionnaires: a critique. Comprehensive Psychology, 4, 03-CP.

R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of statistical software, 48, 1-36.

Savalei, V. (2012). The relationship between root mean square error of approximation and model misspecification in confirmatory factor analysis models. Educational and Psychological Measurement, 72, 910-932

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting structural equation modeling and confirmatory factor analysis results: A review. The Journal of educational research, 99(6), 323-338.

Schumacker, R. E., & Lomax, R. G. (2010). A beginner's guide to structural equation modeling (3rd ed.). Routledge/Taylor & Francis Group.

Sharama, S., Mukherjee, S., Kumar, A., & Dillon, W. R. (2005). A simulation study to investigate the use of cutoff values for assessing model fit in covariance structural models. Journal of Business Research, 58(1), 935-943.

Shi, D., DiStefano, C., McDaniel, H. L., & Jiang, Z. (2018). Examining chi-square test statistics under conditions of large model size and ordinal data. Structural Equation Modeling: A Multidisciplinary Journal, 25, 924-945

Shi, D., Lee, T., & Maydeu-Olivares, A. (2019). Understanding the Model Size Effect on SEM Fit Indices. Educational and Psychological Measurement, 79, 310-334 DOI: 10.1177/0013164418783530

Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate behavioral research, 25(2), 173-180.

Steiger, J., & Lind, J. C. (1980, May). Statistically based tests for the number of common factors. (Paper Presented) at the annual meeting of the Annual Spring Meeting of the Psychometric Society, Iowa City

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1-10.

West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit and model selection in structural equation modeling. In Hoyle, R. (Ed.), Handbook of structural equation modeling (pp. 209–231). New York: Guilford.

Widaman, K. F., & Thompson, J. S. (2003). On specifying the null model for incremental fit indices in structural equation modeling. Psychological Methods, 8, 16–37. doi: 10.1037/1082-989X.8.1.16

Winer, B. J. (1971). statistical principles in experimental design. New York: McGraw-Hill.

Yuan, K. H., Tian, Y., & Yanagihara, H. (2015). Empirical correction to the likelihood ratio statistic for structural equation modeling with many variables. Psychometrika, 80, 379-405.