مقارنة دقة مؤشرات الملائمة الكلية للتحليل العاملي التوكيدي في ضوء اختلاف تعقيد النموذج وحجم العينة وشكل توزيع البيانات وطريقة تقدير المعالم
Comparing the Accuracy of Overall Fit Indices for
Confirmatory Factor Analysis based on the Factors of Model Complexity, Sample
Size, Data Distribution, and Estimation Method.
This study compared the accuracy of
six overall fit indices for Confirmatory Factor Analysis (CFA): X2, RMSEA,
SRMR, CFI, TLI, and AGFI. The comparison was based on four factors: model
complexity (simple, medium, and large), sample size (200, 500, and 750), data
distribution (normal, negative, and positive skewness), and estimation methods
(ML, WLSMV, and USL). A simulation study was conducted using an advanced
factorial research design to manipulate these factors. The findings indicated
that all six fit indices were accurate for simple models, small samples, normal
data, and any estimation method. For moderate models or medium to large
samples, RMSEA, SRMR, CFI, and TLI were the most accurate fit indices. For
large models or skewed data, RMSEA and SRMR were the most accurate fit indices.
Keywords: overall fit indices
for
confirmatory factor analysis, model complexity, sample size, data distribution,
methods for estimating unknown parameters.
Al-Jadha’i, Khalid bin Saad (2005). Decision-making
techniques: computer applications. Dar Al-Ashab for Publishing and
Distribution.
Amer, Abdel Nasser Al-Sayed. (2004). Performance of goodness-of-fit indicators to evaluate the structural equation model. Egyptian Journal of Psychological Studies, 14, 45. http://search.mandumah.com/Record/1008703
Amer, Abdel Nasser Al-Sayed. (2014). Evaluating the use of
structural equation modeling applications in psychological research. Journal of
Arab Studies in Psychology (RANM), 13, 2.
http://search.mandumah.com/Record/700164
Amer, Abdel Nasser Al-Sayed. (2018). Structural equation
modeling for the psychological and social sciences: foundations, applications,
and issues (Part One). Naif Arab University for Security Sciences Publishing
House.
Amer, Abdel Nasser Al-Sayed. (2018). Structural equation
modeling for the psychological and social sciences: foundations, applications,
and issues (Part II). Naif Arab University for Security Sciences Publishing
House.
Amer, Abdel Nasser Al-Sayed. (2022). Analysis of structural
models using LISREL program: SIMPLIS & PRELIS.
Tigza, Amohamed Bouziane. (2012). Exploratory and confirmatory factor analysis, their concepts and methodology, using SPSS and LISREL package. Dar Al Masirah for Publishing and Distribution.
Aera, A. P. A. (1999). Standards for educational and
psychological testing. American Educational Research Association.
Anderson, J. C., & Gerbing, D. W. (1984). The effect of
sampling error on convergence, improper solutions, and goodness of fit indices
for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155–173
Anderson, J. C., & Gerbing, D. W. (1984). The effect of
sampling error on convergence, improper solutions, and goodness-of-fit indices
for maximum likelihood confirmatory factor analysis. Psychometrika, 49,
155-173.
Bandalos, D. L., & Finney, S. J. (2018). Factor
analysis: Exploratory and confirmatory. In The reviewer’s guide to quantitative
methods in the social sciences, 98-122 . Routledge.
Bentler, P. M. (1990). Comparative fit indexes in structural
models. Psychological bulletin, 107(2), 238.
Bentler, P. M. (1995). EQS structural equations program
manual (Vol. 6). Encino, CA: Multivariate software.
Bentler, P. M., & Bonett, D. G. (1980). Significance
tests and goodness of fit in the analysis of covariance structures.
Psychological Bulletin, 88, 588-606.
Bollen, K. A. (1990). Overall fit in covariance structure
models: Two types of sample size effects. Psychological Bulletin, 107, 256?259
Boomsma, A., & Hoogland, J. J. (2001). The robustness of
LISREL modeling revisited. In R. Cudeck, S. du Toit, & D. S?rbom (Eds.),
Structural equation models: Present and future. A Festschrift in honor of Karl
J?reskog (pp. 139–168). Chicago: Scientific Software International.
Breivik, E., & Olsson, U. H. (2001). Adding variables to
improve fit: The effect of model size on fit assessment in LISREL. Structural
equation modeling: Present and future, 169-194.
Brown, T. A. (2006). Confirmatory Factor Analysis for
Applied Research. New York, NY: The Guilford Press.
Browne, M. W. (1984). Asymptotic distribution free methods
in the analysis of covariance structures. British Journal of Mathematical and
Statistical Psychology, 37, 62?83.
Browne, M. W., & Cudeck, R. (1993). Alternative ways of
assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing
structural equation models (pp. 136?162). Newbury Park, CA: Sage.
Byrne, B. m. (2001). Structural equation modeling with AMOS,
EQS, and LISREL: Comparative approaches to testing for the factorial validity
of a measuring instrument. Int. J. Testing, 1, 55-88.
Chau, H., & Hocevar, D. (1995, April). The effects of
number of measured variables on goodness- of-fit in confirmatory factor
analysis (Paper presented). at the annual conference of the American
Educational Research Association, San Francisco
Ding, L., Velicer, W. F., & Harlow, L. L. (1995).
Effects of estimation methods, number of indicators per factor, and improper
solutions on structural equation modeling fit indices. Structural Equation
Modeling, 2, 119–144.
Engel, K., Moosbrugger, H., & Müller, H. (2003).
Evaluating the fit of structural equation models: Tests of significance and
descriptive goodness-of-fit measures. Methods of psychological research online,
8(2), 23-74.
Fan, X., Thompson, B., & Yang, L. (1999). Effects of
sample size, estimation methods, and model specification on structural equation
modeling fit indices. Structural Equation Modeling, 6, 56–83.
Hair, J. F., Gabriel, M., & Patel, V. (2014). AMOS
covariance-based structural equation modeling (CB-SEM): Guidelines on its
application as a marketing research tool. Brazilian Journal of Marketing,
13(2).
Hu, L., & Bentler, P. M. (1995). Evaluating model fit.
In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues and
applications (pp. 76–99). Thousand Oaks, CA: Sage.
Hu, L., & Bentler, P. M. (1998). Fit indices in
covariance structure analysis: Sensitivity under parameterized model
misspecification. Psychological Methods, 3, 424- 453.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit
indexes in covariance structure analysis. Conventional criteria versus new
alternatives. Structural Equation Modeling, 6, 1- 55.
Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test
statistics in covariance structure analysis be trusted? Psychological Bulletin,
112, 351?362.
Jackson, D. L. (2003). Revisiting Sample Size and Number of
Parameter Estimates: Some Support for the N: q Hypothesis. Structural Equation
Modeling, 10, 128–141
Jackson, D. L., Gillaspy, J. A., & Purc-Stephenson, R.
(2009). Reporting practices in confirmatory factor analysis: An overview and
some recommendations. Psychological Methods, 14, 6-23.
Joreskog, K. G., & Sorbom, D. (1989). LISREL 7: User’s
Reference Guide. Chicago, IL: Scientific Software.
Kaplan, D. (2000). Structural equation modeling: Foundation
and extensions. Thousand Oaks, CA: Sage Publications.
Kenny, D. A., Kaniskan, B., & McCoach, D. B. (2015). The
performance of RMSEA in models with small degrees of freedom. Sociological
Methods & Research, 44(3), 486–507.
https://doi.org/10.1177/0049124114543236
Kenny, D. A., & McCoach, D. B. (2003), "Effect of
the Number of Variables on Measures of Fit in Structural Equation
Modeling," Structural Equation Modeling, 10, 333-51.
Kline, R. K. (2016). Principles and practice of structural
equation modeling (4th.ed). New York: Guilford publications, Inc.
Lord, F., & Novick, M. (1968). Statistical theories of
mental test scores. Reading, MA: Addison-Wesley
Marsh, H. W., Balla, J. R., & Hau, K. T. (1996). An
evaluation of incremental fit indices: A clarification of mathematical and
empirical properties. Advanced structural equation modeling: Issues and
techniques, 315-353.
Marsh, H. W., Hau, K. T., Balla, J. R., & Grayson, D.
(1998). Is more ever too much? The number of indictors per factors in
confirmatory factor analysis. Multivariate Behavioral Research, 33, 181–222.
McDonald, R. P., & Ho, M. H. R. (2002). Principles and
practice in reporting structural equation analyses. Psychological methods,
7(1), 64.
McDonald, R. P., & Marsh, H. W. (1990). Choosing a
multivariate model: Noncentrality and goodness of fit. Psychological Bulletin,
107, 247–255.
McQuitty, S. (2004), "Statistical power and structural
equation models in business research,". Journal of Business Research, 57,
175-83
Moshagen, M. (2012). The model size effect in SEM: Inflated
goodness-of-fit statistics are due to the size of the covariance matrix.
Structural Equation Modeling: A Multidisciplinary Journal, 19, 86-98.
Mulaik, S. A., Jams, L. R., Alstine, J. V., Bonnett, N.,
lind, S., & Stilwell, D. C. (1989). Evaluation of goodness of fit indices
for structural equation models. Psychological Bulletin, 105, 430-445.
Muthén, L. K., & Muthén, B. O. (2002). How to use a
Monte Carlo study to decide on sample size and determine power. Structural
Equation Modeling, 4, 599?620.
Muthén, L. K., & Muthén, B. O. (2012). 1998–2012. Mplus
user’s guide. Los Angeles: Muthen & Muthen.
Mvududu, N. H., & Sink, C. A. (2013). Factor analysis in
counseling research and practice. Counseling Outcome Research and Evaluation,
4(2), 75-98.
Prudon, P. (2015). Confirmatory factor analysis as a tool in
research using questionnaires: a critique. Comprehensive Psychology, 4, 03-CP.
R Core Team (2023). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org.
Rosseel, Y. (2012). lavaan: An R package for structural
equation modeling. Journal of statistical software, 48, 1-36.
Savalei, V. (2012). The relationship between root mean
square error of approximation and model misspecification in confirmatory factor
analysis models. Educational and Psychological Measurement, 72, 910-932
Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A.,
& King, J. (2006). Reporting structural equation modeling and confirmatory
factor analysis results: A review. The Journal of educational research, 99(6),
323-338.
Schumacker, R. E., & Lomax, R. G. (2010). A beginner's
guide to structural equation modeling (3rd ed.). Routledge/Taylor & Francis
Group.
Sharama, S., Mukherjee, S., Kumar, A., & Dillon, W. R.
(2005). A simulation study to investigate the use of cutoff values for
assessing model fit in covariance structural models. Journal of Business
Research, 58(1), 935-943.
Shi, D., DiStefano, C., McDaniel, H. L., & Jiang, Z.
(2018). Examining chi-square test statistics under conditions of large model
size and ordinal data. Structural Equation Modeling: A Multidisciplinary
Journal, 25, 924-945
Shi, D., Lee, T., & Maydeu-Olivares, A. (2019).
Understanding the Model Size Effect on SEM Fit Indices. Educational and
Psychological Measurement, 79, 310-334 DOI: 10.1177/0013164418783530
Steiger, J. H. (1990). Structural model evaluation and
modification: An interval estimation approach. Multivariate behavioral
research, 25(2), 173-180.
Steiger, J., & Lind, J. C. (1980, May). Statistically
based tests for the number of common factors. (Paper Presented) at the annual
meeting of the Annual Spring Meeting of the Psychometric Society, Iowa City
Tucker, L. R., & Lewis, C. (1973). A reliability
coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1-10.
West, S. G., Taylor, A. B., & Wu, W. (2012). Model fit
and model selection in structural equation modeling. In Hoyle, R. (Ed.),
Handbook of structural equation modeling (pp. 209–231). New York: Guilford.
Widaman, K. F., & Thompson, J. S. (2003). On specifying
the null model for incremental fit indices in structural equation modeling.
Psychological Methods, 8, 16–37. doi: 10.1037/1082-989X.8.1.16
Winer, B. J. (1971). statistical principles in experimental
design. New York: McGraw-Hill.
Yuan, K. H.,
Tian, Y., & Yanagihara, H. (2015). Empirical correction to the likelihood
ratio statistic for structural equation modeling with many variables.
Psychometrika, 80, 379-405.