Examining Saudi’s Secondary School Teachers’ Acceptance of Augmented Reality Technology



<p>د. حامد علي الشهراني</p><p>Dr. Hamed Ali Al-Shahrani<br></p>

الكلمات مفتاحية: نموذج قبول التكنولوجيا (TAM)، الواقع المعزز، المدارس الثانوية, Educational Challenges, International Students, The Islamic University

هدفت الدراسة إلى التحقق من نية المعلمين السلوكية في تبني واستخدام الواقع المعزز في المملكة العربية السعودية. مجتمع الدراسة يتشكل من المعلمين في 14 مدرسة ثانوية عامة للبنين في مدينة أبها. تم اختيار188 معلمًا منهم كعينة ممثلة، وزعت عليهم استبانة اشتملت على عوامل مختلفة لقياس مدى تقبلهم للواقع المعزز. وتم استخدام نموذج قبول التكنولوجيا لبناء أداة الدراسة. وتم اختبار خمسة عوامل ضمن فرضيات الدراسة كانت كالتالي: الفائدة المتصورة، وسهولة الاستخدام، والاتجاهات نحو الاستخدام، والنية السلوكية للاستخدام، والمتعة المتصورة. وأكدت هذه الدراسة أن النموذج المقترح والمعدل على نموذج قبول التكنولوجيا يعتبر أداة نظرية تساعد في فهم وتفسير النية السلوكية لاستخدام الواقع المعزز، وتوصلت نتائج الدراسة إلى أن الفائدة المتصورة، والاتجاهات نحو الاستخدام لها تأثير على النية السلوكية للاستخدام. كما تشير نتائج الدراسة إلى تأثير الفائدة المتصورة، والمتعة المتصورة على اتجاهات المعلمين نحو استخدام الواقع المعزز، ولكن لا يوجد تأثير مباشر لسهولة الاستخدام على اتجاهاتهم. كان هناك عدد قليل من الدراسات المتعلقة بالواقع المعزز درست العلاقات بين عامل المتعة المتصورة والعوامل الأخرى  المكونة لنموذج قبول التكنولوجيا، لهذا، فالنتائج التي توصلت إليها الدراسة الحالية تقدّم مرجعًا مفيداً  للدراسات المستقبلية حول استخدام نموذج قبول التكنولوجيا وتقنية الواقع المعزز. واختتمت الدراسة بمجموعة من المقترحات والتوصيات، والتطبيقات الممكنة للواقع المعزز لتحسين أساليب التدريس لدى المعلمين.

The current study aimed to know Educational challenges facing international scholarship students studying at the Islamic University in Medina from their point of view, and to understand the differences between students in these problems in terms of: university stage, academic major, cumulative average, knowledge of the Arabic language, and the continent to which it belongs. Based on the results of the study, a proposal was presented for solving these Challenges.

The study sample consisted of (460) students who were randomly chosen stratified from the international scholarship students studying at the Islamic University in Medina, and The researcher used the questionnaire to reveal the Study challenges, and it consists of (ten) dimensions: the study system, Staff members, courses, tests, Student counseling, administrative system, public services, students, university library, electronic technologies. An analytical descriptive approach was used, and statistical methods described in: arithmetic averages, standard deviations, and the stability factor "Alpha-Kronbach" and T-test for independent samples, the ANOVA test, and the Pearson correlation coefficient.

The results showed that the level of Study challenges faced by international scholarship students studying at the Islamic University in Medina came with a high degree, With a rate of (75.6142%), with an arithmetic average of (3.78071), with differences attributable to the "academic major" variable in favor of theoretical Majors, and differences attributed to the cumulative average variable in favor of estimating the "excellent", and the results did not show differences Attributed to variables: the university stage, familiarity with the Arabic language, and the continent to which the student belongs, and the researcher  reached to some  recommendations.




Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11. http://doi:10.1016/j.edurev.2016.11.002

Alalwan, A. A., Baabdullah, A. M., Rana, N. P., Tamilmani, K., & Dwivedi, Y. K. (2018). Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust. Technology in Society, 55, 100–110. https://doi.org/10.1016/j.techsoc.2018.06.007

Anderson, M., & Jiang, J. (2019, December 31). Teens, Social Media & Technology 2018. Retrieved from https://www.pewresearch.org/internet/2018/05/31/teens-social-media-technology-2018/

Anonymous (2006), “Thomson Learning and Turning Technologies Pilot Reveals College Students More Likely to Attend Class and Interact with Instructor as a Result of Added Technology Resources,” PR Newswire (Jan. 31), 1.

Arcos, C., Fuertes, W., Villacis, C., Zambrano, M., Noboa, T., Tacuri, A., Toulkeridis, T. (2016). Playful and interactive environment-based augmented reality to stimulate learning of children. 2016 18th Mediterranean Electrotechnical Conference (MELECON). http://doi.org/10.1109/MELCON.2016.7495421

Balog, A., & Pribeanu, C. (2010). The Role of Perceived Enjoyment in the Students’ Acceptance of an Augmented Reality Teaching Platform: A Structural Equation Modelling Approach. Studies in Informatics and Control, 19(3),319-330. https://doi.org/10.24846/v19i3y201011

Becker, S.A., Brown, M., Dahlstrom, E., Davis, A., DePaul, K., Diaz, V., & Pomerantz, J. (2018). NMC Horizon Report: 2018 Higher Education Edition. Louisville, CO: Educause. https://library.educause.edu/~/media/files/library/2018/8/2018horizonreport.pdf

Beldad, A., & Hegner, S. (2018). Expanding the Technology Acceptance Model (TAM) with the inclusion of trust, social influence, and health valuation to determine the predictors of German users’ willingness to continue using a fitness app: A structural equation modeling approach. International Journal of Human-Computer Interaction, 34 (9), 882–893. https://doi:10.1080/10447318.2017.1403220

Bojórquez, E. M., Villegas, O. O. V., Sánchez, V. G. C., García-Alcaraz, J. L., & Vara, J. F. (2016). Study on Mobile Augmented Reality Adoption for Mayo Language Learning. Mobile Information Systems, 2016, 1–15. https://doi.org/10.1155/2016/1069581

Briz-Ponce, L., Pereira, A., Carvalho, L., Juanes-Méndez, J. A., & García-Peñalvo, F. J. (2017). Learning with mobile technologies–Students’ behavior. Computers in Human Behavior, 72, 612-620. http://doi.org/http://dx.doi.org/10.1016/j.chb.2016.05.027

Cabero-Almenara, J., Fernández-Batanero, J. M., & Barroso-Osuna, J. (2019). Adoption of augmented reality technology by university students. Heliyon, 5(5).https://doi.org/10.1016/j.heliyon.2019.e01597

Chen, C.-P., & Wang, C.-H. (2015). Employing Augmented-Reality-Embedded Instruction to Disperse the Imparities of Individual Differences in Earth Science Learning. Journal of Science Education and Technology, 24(6), 835–847. https://doi.org/10.1007/s10956-015-9567-3

Chen, Y.-C., Chi, H.-L., Hung, W.-H., & Kang, S.-C. (2011). Use of Tangible and Augmented Reality Models in Engineering Graphics Courses. Journal of Professional Issues in Engineering Education and Practice, 137(4), 267–276. https://doi.org/10.1061/(asce)ei.1943-5541.0000078

Chiang, T. H. C., Yang, S. J. H., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4), 352-365. Retrieved from http://www.ifets.info/journals/17_4/24.pdf.

Chuah, S. H.-W., Rauschnabel, P.A., Krey, N., Nguyen, B., Ramayah, T., & Lde, S. (2016), Wearable technologies: The role of usefulness and visibility in smartwatch adoption. Computers in Human Behavior, 65, 276-284. 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.https://doi.org/10.2307/249008

Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475–487. https://doi.org/10.1006/imms.1993.1022

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and Intrinsic Motivation to Use Computers in the Workplace1. Journal of Applied Social Psychology, 22(14), 1111–1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x

Dimock, M. (2019, January 17). Defining generations: Where Millennials end and Generation Z begins. Impact Lab RSS.http://www.impactlab.net/2019/03/27/defining-generations-where-millennials-end-and-generation-z-begins/.

Erbas, C., & Demirer, V. (2019). The effects of augmented reality on students' academic achievement and motivation in a biology course. Journal of Computer Assisted Learning, 35(3), 450-458. https://doi.org/10.1111/jcal.12350

Escobedo, L., & Tentori, M. (2014). Mobile Augmented Reality to Support Teachers of Children with Autism. Ubiquitous Computing and Ambient Intelligence. Personalization and User Adapted Services Lecture Notes in Computer Science, 60–67. https://doi.org/10.1007/978-3-319-13102-3_12

Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley

Fishbein, M., & Ajzen, I. (1976). Misconceptions about the Fishbein model: Reflections on a study by Songer-Nocks. Journal of Experimental Social Psychology, 12(6), 579–584. https://doi.org/10.1016/0022-1031(76)90036-6

Gliem, J. A., & Gliem, R. R. (2003). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. Presented at the Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education, The Ohio State University.

Haugstvedt, A.-C., & Krogstie, J. (2012). Mobile augmented reality for cultural heritage: A technology acceptance study. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). https://doi.org/10.1109/ismar.2012.6402563

Ho, S., Hsieh, S., Sun, P., & Chen, C. (2017). To activate English learning: Listen and speak in real life context with an AR featured U-learning system. Educational Technology & Society, 20(2), 176-187.

Hsin-Hun, L., Yang, S. J. H., Chen, S. Y. and Wernhuar, T. (2017). The influences of the 2d image-based augmented reality and virtual reality on student learning. Journal of Educational Technology & Society. 20(3), 110-121

Hsu, T.-C. (2017). Learning English with Augmented Reality: Do learning styles matter? Computers & Education, 106, 137–149. https://doi.org/10.1016/j.compedu.2016.12.007

Huang, Y.-M. (2016). The factors that predispose students to continuously use cloud services: Social and technological perspectives. Computers & Education, 97, 86–96. https://doi.org/10.1016/j.compedu.2016.02.016

Ibáñez, M.-B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109–123. https://doi.org/10.1016/j.compedu.2018.05.002

Ibili, E., Resnyansky, D., & Billinghurst, M. (2019). Applying the technology acceptance model to understand maths teachers’ perceptions towards an augmented reality tutoring system. Education and Information Technologies, 24(5), 2653–2675. https://doi.org/10.1007/s10639-019-09925-z

Khan, T., Johnston, K., & Ophoff, J. (2019). The Impact of an Augmented Reality Application on Learning Motivation of Students. Advances in Human-Computer Interaction, 2019, 1–14. https://doi.org/10.1155/2019/7208494

Kim, K., Hwang J, Zo H, Lee H (2016) Understanding users’ continuance intention toward smartphone augmented reality applications. Inf Dev 32:161–174.

Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information and Management, 40(3), 1–14.

Lemay, D., Doleck, T., & Bazelais, P. (2019). Context and technology use: Opportunities and challenges of the situated perspective in technology acceptance research. British Journal of Educational Technology, 50, 2450–2465. https://doi.org/10.1111/bjet.12859.

Leue, M.C., tom Dieck, D., & Jung, T. (2014). A Theoretical Model of Augmented Reality Acceptance. eReview of Tourism Research, 5, 1-5.

Lin, H. F., & Chen, C. H. (2017). Combining the technology acceptance model and uses and gratifications theory to examine the usage behavior of an augmented reality tour-sharing application. Symmetry, 9(7), 113. https://doi:10.3390/sym9070113

Liou, W. K., Bhagat, K. K., & Chang, C. Y. (2016). Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses. Journal of Science Education and Technology, 25(3), 460-473.

Liu, S. (2019, December 13). Global augmented reality market size 2025. Statista. https://www.statista.com/statistics/897587/world-augmented-reality-market-value/.

Luan, W. S., & Teo, T. (2009). Investigating the Technology Acceptance among Student Teachers in Malaysia: An Application of the Technology Acceptance Model (TAM). The Asia-Pacific Education Researcher, 18(2). https://doi.org/10.3860/taper.v18i2.1327

Lytridis, C., & Tsinakos, A. (2018). Evaluation of the AR Tutor augmented reality educational platform in tertiary education. Smart Learning Environments 5(1), 6. http://doi.org/10.1186/s40561-018-0058-x

Martín‐García, A. V., Martínez‐Abad, F., & Reyes‐González, D. (2019). TAM and stages of adoption of blended learning in higher education by application of data mining techniques. British Journal of Educational Technology, 50(5), 2484–2500. https://doi.org/10.1111/bjet.12831

Maziriri, E. T., Gapa, P., & Chuchu, T. (2020). Student Perceptions Towards the use of YouTube as An Educational Tool for Learning and Tutorials. International Journal of Instruction, 13(2), 119-138. https://doi.org/10.29333/iji.2020.1329a

Munir, A. R., & Ilyas, G. B. (2017). Extending the technology acceptance model to predict the acceptance of customer toward mobile banking service in Sulawesi selatan. International Journal of Economic Research,14(4), 365–375

National Education Portal (iEN) (2020). Ien National Education e-Portal. Available at: https://ien.edu.sa [Accessed 8 March 2020]

Nikou, S. A., & Economides, A. A. (2017). Mobile-based assessment: Investigating the factors that influence behavioral intention to use. Computers & Education, 109, 56–73.

Petrock, V. (2019, March 27). Virtual and Augmented Reality Users 2019. eMarketer. https://www.emarketer.com/content/virtual-and-augmented-reality-users-2019.

Radosavljevic, S., Radosavljevic, V., & Grgurovic, B. (2018). The potential of implementing augmented reality into vocational higher education through mobile learning. Interactive Learning Environments, 28(4), 404-418. https://doi:10.1080/10494820.2018.1528286

Rauschnabel, P. A., & Ro, Y. K. (2016). Augmented reality smart glasses: an investigation of technology acceptance drivers. International Journal of Technology Marketing, 11(2), 123. https://doi.org/10.1504/ijtmkt.2016.075690

Revythi, A., & Tselios, N. (2019). Extension of technology acceptance model by using system usability scale to assess behavioral intention to use e-learning. Education and Information Technologies, 24(4), 2341–2355. https://doi.org/10.1007/s10639-019-09869-4

Sánchez-Prieto, J. C., Olmos-Migueláñez, S., & García-Peñalvo, F. J. (2017). MLearning and pre-service teachers: An assessment of the behavioral intention using an expanded TAM model. Computers in Human Behavior, 72, 644–654. https://doi.org/10.1016/j.chb.2016.09.061

Sánchez‐Prieto, J. C., Huang, F., Olmos‐Migueláñez, S., García‐Peñalvo, F. J., & Teo, T. (2019). Exploring the unknown: The effect of resistance to change and attachment on mobile adoption among secondary pre‐service teachers. British Journal of Educational Technology, 50(5), 2433–2449. https://doi.org/10.1111/bjet.12822

Scrivner, O., Madewell, J., Buckley, C., & Perez, N. (2016). Augmented reality digital technologies (ARDT) for foreign language teaching and learning. 2016 Future Technologies Conference (FTC). https://doi.org/10.1109/ftc.2016.7821639

Suki, N. M., & Suki, N. M. (2011). Exploring the relationship between perceived usefulness, perceived ease of use, perceived enjoyment, attitude and subscribers’ intention towards using 3G mobile services. Journal of Information Technology Management, 22(1), 1–7.

Šumak, B., Heričko, M., & Pušnik, M. (2011). A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. Computers in Human Behavior, 27(6), 2067–2077. https://doi.org/10.1016/j.chb.2011.08.005

Sytwu, T.-A., & Wang, C.-H. (2015). An Investigation of the Effects of Individual Differences on Mobile-Based Augmented Reality English Vocabulary Learning. Mobile Learning Design Lecture Notes in Educational Technology, 387–410. https://doi.org/10.1007/978-981-10-0027-0_23

Teo, T., & Huang, F. (2018). Investigating the influence of individually espoused cultural values on teachers’ intentions to use educational technologies in Chinese universities. Interactive Learning Environments. https://doi.org/10.1080/10494820.2018.1489856.

Teo, T., & Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education, 57(2), 1645–1653. https://doi.org/10.1016/j.compedu.2011.03.002

Ursavaş, Ö. F., Yalçın, Y., & Bakır, E. (2019). The effect of subjective norms on preservice and in‐service teachers’ behavioural intentions to use technology: A multigroup multimodel study. British Journal of Educational Technology, 50(5), 2501–2519. https://doi.org/10.1111/bjet.12834

Venkatesh, V., & Bala, H. (2008), Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273–315. 

Wang, Y.-H. (2017). Exploring the effectiveness of integrating augmented reality-based materials to support writing activities. Computers & Education, 113, 162–176. https://doi.org/10.1016/j.compedu.2017.04.013

Weng, F., Yang, R.-J., Ho, H.-J., & Su, H.-M. (2018). A TAM-Based Study of the Attitude towards Use Intention of Multimedia among School Teachers. Applied System Innovation, 1(3), 36. https://doi.org/10.3390/asi1030036

Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68, 570–585. https://doi.org/10.1016/j.compedu.2013.02.014

Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221-232. https://doi.org/10.1016/j.chb.2016.10.028.

Yalcin, M. E., & Kutlu, B. (2019). Examination of students' acceptance of and intention to use learning management systems using extended TAM. British Journal of Educational Technology, 50(5), 2414–2432. https://doi.org/10.1111/bjet.12798

Yoon, S. A., Anderson, E., Lin, J., & Elinich, K. (2017, January). How Augmented Reality Enables Conceptual Understanding of Challenging Science Content. Educational Technology & Society 20(1):156, 20(1), 156-168

Yuen, A. H. K., Cheng, M., & Chan, F. H. F. (2019). Student satisfaction with learning management systems: A growth model of belief and use. British Journal of Educational Technology, 50, 2520–2535. https://doi.org/10.1111/bjet.1283.