مجلة الجامعة الإسلامية للعلوم التطبيقية

Enhancing Quadrotor UAV Trajectory Tracking Using Adaptive Fuzzy PID Control

Hocine LOUBAR,, Mohammed Idris ARIF, Reda Zakaria BAFFOUو Razika, Zamoum BOUSHAKI 

الكلمات مفتاحية: Unmanned Aerial Vehicle (UAV), Trajectory tracking, Quadrotor control, Adaptive Fuzzy PID.

التخصص العام: Engineering

التخصص الدقيق: Control engineering

https://doi.org/10.63070/jesc.2026.010; Received 20 November 2025; Revised 16 January 2026; Accepted 25 January 2026. Available online 31 January 2026.
DownloadPDF
الملخص

Unmanned aerial vehicles (UAVs) require precise and robust control strategies to ensure safe and efficient flight. This work focuses on the Adaptive Fuzzy PID (AFPID) controller as the main method, which integrates classical Proportional-Integral-Derivative (PID) control with fuzzy logic principles to achieve real-time parameter adaptation. The PID and fuzzy PID controllers are considered as baseline methods for performance comparison with the adaptive fuzzy PID. Simulation was done using MATLAB to evaluate the controllers in terms of trajectory tracking, settling time, Root Mean Square error and robustness under disturbance. Since PID and FPID exhibited similar response shapes to AFPID, only their performance metrics were reported for comparison. The results demonstrate that all controllers successfully stabilize the UAV without steady-state error, while AFPID provides slightly improved settling times and disturbance rejection compared to PID and FPID. These findings confirm the effectiveness of adaptive fuzzy control as a reliable solution for UAV path-tracking tasks.

مراجع

[1]   T. Ahmad, A. E. Morel, N. Cheng, K. Palaniappan, P. Calyam, K. Sun, and J. Pan, Future UAV/Drone systems for intelligent active surveillance and monitoring, ACM Comput. Surv., Aug. 2025. doi: 10.1145/3760389.

[2]   S. Simon, Drones for automated parcel delivery: Use case analysis, Transp. Res. Interdiscip. Perspect., vol. 40, 2024, Art. no. 100931. doi: 10.1016/j.trip.2024.100931.

[3]   Nandini and S. R. Singh, Application of drones technology in agriculture: A modern approach, J. Sci. Res. Rep., vol. 30, no. 7, pp. 142–152, 2024. doi: 10.9734/jsrr/2024/v30i72131.

[4]   A. Noordin, M. A. A. Basri, and Z. Mohamed, Adaptive PID control via sliding mode for position tracking of quadrotor MAV: Simulation and real-time experiment evaluation, Aerospace, vol. 10, no. 6, Art. no. 512, May 2023. doi: 10.3390/aerospace10060512.

[5]   A. G. Melo et al., Fuzzy gain-scheduling PID for UAV position and altitude controllers, Sensors, vol. 22, no. 6, Art. no. 2173, Mar. 2022. doi: 10.3390/s22062173.

[6]   Y. Ye, Homeostasis of a quadrotor UAV based on fuzzy adaptive PID controller, in Proc. 2024 Int. Conf. Intell. Auto. and Adv. AI (ICIAAI), Atlantis Press, 2024. doi: 10.2991/978-94-6463-540-9_53.

[7]   F. Fahmizal, Altitude control of quadrotor using fuzzy self-tuning PID controller, in Proc. IEEE Int. Conf. Control, Robot. Integr. Syst. (ICCRIS), 2017. doi: 10.1109/ICCRIS.2017.8068415.

[8]   H. Hagras, General Type-2 Fuzzy Logic Systems to Enable Better Uncertainty Handling for Real World Application, The Computational Intelligence Center. Lecture presented at the The computational intelligence center.

[9]   E. H. Mamdani, S. Assilian. "An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller". International Journal of Man-Machine Studies 7,January 1975

[10]  Mathwork, Mamdani and Sugeno Fuzzy Inference System,    https://www.mathworks.com/help/fuzzy/types-of-fuzzy-inference-systems.html.

[11]   M. Makhtoumi, Active Vibration Control of Launch Vehicle on Satellite Using Piezoelectric Stack Actuator, arXiv [Physics.Space-Ph], 2023. arXiv. http://arxiv.org/abs/1903.07396.

[12]  M. A. Sattar, Adaptive Fuzzy Control of Quadrotor, M.S. thesis, Rochester Institute of Technology, Dubai, 2017. [Online]. Available: https://repository.rit.edu/theses/9618/

[13] M. A. Chanc?n Le?n, S. Leal Braga, and J. C. Cuisano Eg?squiza, Combustion air temperature and humidity control for engine testing, in Proc. VII Congresso Nacional de Engenharia Mecânica (CONEM), S?o Lu?s, Maranh?o, Brazil, Jul.–Aug. 2012, pp. 1–7.

[14]  H.  Boudjedir, Dual Neural Network for Adaptive Sliding Mode Control of Quadrotor Helicopter Stabilization,  International Journal of Information Sciences and Techniques 2, no. 4 (July 31, 2012). https://doi.org/10.5121/ijist.2012.2401.

[15] A. Eltayeb, M. F. Rahmat, M. A. M. Eltoum, M. H. S. Ibrahim and M. A. M. Basri, Trajectory Tracking for the Quadcopter UAV utilizing Fuzzy PID Control Approach, 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, Sudan, 2021.