مجلة الجامعة الإسلامية للعلوم التطبيقية

An Ultra-Wide-Band non-Conventional two Element MIMO Antenna

Khelil FERTAS, Fouad FERTAS 

الكلمات مفتاحية: MIMO, Ultra-Wide-Band, Diversity gain, ECC, Isolation enhancement, Non-conventional antenna.

التخصص العام: Engineering

التخصص الدقيق: Microwave theory and applications

https://doi.org/10.63070/jesc.2026.001; Received 30 November 2025; Revised 12 January 2026; Accepted 24 January 2026. Available online 31 January 2026.
DownloadPDF
الملخص

This paper describes a planar Multiple-Input-Multiple-Output (MIMO) antenna designed for Ultra-Wide-Band (UWB) applications. The configuration consists of two identical non-conventional parallel pieces. Each element is optimized using Genetic Algorithm code created in the CST microwave studio's visual basic scripting (VBS) environment. T-shaped is appropriate for parallel and. The suggested MIMO antenna attains operating band of over 171.4% on (2 - 26 GHz), ECC less than 0.01 and Diversity Gain (DG) more than 9.98 were obtained. The proposed structure is designed on the Rogers RT6002 substrate with a dielectric constant of 2.94, a height of 1.52mm, and a loss tangent of 0.0012. The simulated isolation between ports is better than -20?dB in most bandwidth. The proposed antenna is well-suited for UWB MIMO applications. 

مراجع

[1] R. Karli and H. Ammor, A simple and original design of multi-band microstrip patch antenna for wireless communication, International Journal of Microwaves Applications, 2013.

[2] K. Fertas, F. Fertas, M. Challal, and T. A. Denidni, A novel miniaturized V-shaped monopole antenna for GSM/WiMAX/WLAN applications, Frequenz, vol. 77, pp. 155-162, 2023.

[3] F. Fertas, M. Challal, and K. Fertas, Miniaturized quintuple band antenna for multiband applications, Progress In Electromagnetics Research M, vol. 89, pp. 83-92, 2020.

[4] Tao, J.; Feng, Q. Compact ultra-wideband MIMO antenna with half-slot structure, IEEE Antennas Wirel. Propag. Lett. , 16, pp. 792–795, 2016.

[5] Xu, Y.; Dong, Y.; Wen, S.; Wang, H. Vertically polarized quasi-Yagi MIMO antenna for 5G N78 band application, IEEE Access , 9, pp. 7836–7844, 2021.

[6] Sakli, H.; Abdelhamid, C.; Essid, C.; Sakli, N. Metamaterial-based antenna performance enhancement for MIMO system applications, IEEE Access, 9, pp. 38546–38556, 2021.

[7] Garg, P.; Jain, P. Isolation improvement of MIMO antenna using a novel flower shaped metamaterial absorber at 5.5GHz WiMAX band, IEEE Trans. Circuits Syst. Vol. 67, pp. 675–679, 2020.

[8] Wang, Z.; Zhao, L.; Cai, Y.; Zheng, S.; Yin, Y. A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system, Sci. Rep.  vol. 8, pp. pp. 3152–3159, 2018.

[9] Xue, C.D.; Zhang, X.Y.; Cao, Y.F.; Hou, Z.; Ding, C.F. MIMO antenna using hybrid electric and magnetic coupling for isolation enhancement, IEEE Trans. Antennas Propag. , vol. 65, pp. 5162–5170, 2017.

[10] Yang, C.; Kim, J.; Kim, H.; Wee, J.; Kim, B.; Jung, C. Quad-band antenna with high isolation MIMO and broadband SCS for broadcasting and telecommunication services, IEEE Antennas Wirel. Propag. Lett.  Vol. 9, pp. 584–587, 2010.

[11] Bhattacharya, A.; Roy, B. Investigations on an extremely compact MIMO antenna with enhanced isolation and bandwidth, Microw. Opt. Technol. Lett. , vol. 62, pp. 845–851, 2020.

[12] Pei, T.; Zhu, L.; Wang, J.; Wu, W. A low-profile decoupling structure for mutual coupling suppression in MIMO patch antenna, IEEE Trans. Antennas Propag. , vol. 69, pp. 6145–6153, 2021.

[13] Pan, B.C.; Cui, T.J. Broadband decoupling network for dual-band microstrip patch antennas, IEEE Trans. Antennas Propag. , vol. 65, pp. 5595–5598, 2017.

[14] Khalid, M.; Iffat Naqvi, S.; Hussain, N.; Rahman, M.; Mirjavadi, S.S.; Khan, M.J.; Amin, Y. 4-port MIMO antenna with defected ground structure for 5G millimeter wave applications, Electronics , vol.9, 71, 2020.