Study of Mechanical, Electronic and Optical Characteristics for AuBiF3 Material
In this study, we present an ab initio theoretical study of the mechanical, electronic, and optical properties of AuBiF3 using ultrasoft pseudopotentials within the framework of density functional theory (DFT). Our investigation shows the formation energy is negative, which indicates that the material is stable thermodynamically. The elastic properties show that the studied perovskite satisfies the Born stability criteria, confirming its mechanical stability. Additionally, the Pugh ratio (B/G) exceeds 1.75, indicating that the material exhibits ductility. The electronic band gap indicates that this material is a semiconductor with a direct M-M band gap of 1.51 eV, as determined using the HSE06 functional, making it suitable for solar energy applications. An examination of the optical properties shows that the absorption coefficient exhibits significant absorption in the visible range, on the order of 104 cm?¹, along with strong ultraviolet absorption, also on the order of 104 cm?¹. Our findings suggest that the investigated material possesses notable characteristics, making it promising for solar cell applications and other optoelectronic devices.
[1] P. Basumatary, P. Agarwal, A short review on progress in perovskite solar cells, Mater. Res. Bull., 149 (2022) 111700.
[2] M. Younas, T.A. Kandiel, A. Rinaldi, Q. Peng, A.A. Al-Saadi, Ambient-environment processed perovskite solar cells: a review, Materials Today Physics, 21 (2021) 100557.
[3] J. Liao, X. Zhang, S. Guo, S. Zhang, X. Hu, Y. Chen, Fabrication and challenges for high-efficiency and up-scale perovskite solar modules, J. Mater. Chem., 12 (44) (2024) 17720-17741.
[4] Q.A. Akkerman, L. Manna, What defines a halide perovskite?, ACS energy letters, 5 (2) (2020) 604-610.
[5] P. Roy, A. Ghosh, F. Barclay, A. Khare, E. Cuce, Perovskite solar cells: A review of the recent advances, Coatings, 12 (8) (2022) 1089.
[6] A.W. Faridi, M. Imran, G.H. Tariq, S. Ullah, S.F. Noor, S. Ansar, F. Sher, Synthesis and characterization of high-efficiency halide perovskite nanomaterials for light-absorbing applications, Industrial & Engineering Chemistry Research, 62 (11) (2022) 4494-4502.
[7] F. Cao, L. Bian, L. Li, Perovskite solar cells with high-efficiency exceeding 25%: A review, Energy Mater. Devices, 2 (1) (2024) 9370018.
[8] R.H. Friend, D. Di, S. Lilliu, B. Zhao, Perovskite LEDs, Scientific Video Protocols, 1 (1) (2019) 1-5.
[9] R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X.C. Zeng, J. Huang, Photodetectors: High?Gain and Low?Driving?Voltage Photodetectors Based on Organolead Triiodide Perovskites (Adv. Mater. 11/2015), Adv. Mater., 27 (11) (2015) 1967-1967.
[10] X. Lu, X. Fan, H. Zhang, Q. Xu, M. Ijaz, Review on preparation of perovskite solar cells by pulsed laser deposition, Inorganics, 12 (5) (2024) 128.
[11] Y. Li, D. Maldonado-Lopez, V. R?os Vargas, J. Zhang, K. Yang, Stability diagrams, defect tolerance, and absorption coefficients of hybrid halide semiconductors: High-throughput first-principles characterization, J. Chem. Phys., 152 (8) (2020).
[12] A. Kumar, S. Singh, M.K. Mohammed, A.E. Shalan, Effect of 2D perovskite layer and multivalent defect on the performance of 3D/2D bilayered perovskite solar cells through computational simulation studies, Solar Energy, 223 (2021) 193-201.
[13] G. Tong, L.K. Ono, Y. Qi, Recent progress of all?bromide inorganic perovskite solar cells, Energy Technology, 8 (4) (2020) 1900961.
[14] J. Tao, C. Zhao, Z. Wang, Y. Chen, L. Zang, G. Yang, Y. Bai, J. Chu, Suppressing non-radiative recombination for efficient and stable perovskite solar cells, Energy Environ. Sci., 18 (2) (2025) 509-544.
[15] M.S. Reza, M.S. Reza, A. Ghosh, M.F. Rahman, J.R. Rajabathar, F. Ahmed, M. Sajid, M.F.I. Buian, J. Bhandari, M.A. Islam, New highly efficient perovskite solar cell with power conversion efficiency of 31% based on Ca3NI3 and an effective charge transport layer, Optics Communications, 561 (2024) 130511.
[16] D.H. Kim, C.P. Muzzillo, J. Tong, A.F. Palmstrom, B.W. Larson, C. Choi, S.P. Harvey, S. Glynn, J.B. Whitaker, F. Zhang, Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS, Joule, 3 (7) (2019) 1734-1745.
[17] M.N.A. Dipon, M.A. Sahriar, S. Sarker, M.T. Islam, A. Rauf, M.R.H. Abed, A.R. Nirjhar, S.J. Tan-Ema, K.M. Shorowordi, S. Ahmed, A comprehensive study of mechanically stacked tandem photovoltaic devices: materials selection and efficiency analysis using SCAPS, Energy Convers. Manage., 300 (2024) 117904.
[18] V. Milman, K. Refson, S. Clark, C. Pickard, J. Yates, S.-P. Gao, P. Hasnip, M. Probert, A. Perlov, M. Segall, Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation, Journal of Molecular Structure: THEOCHEM, 954 (1-3) (2010) 22-35.
[19] H. Peng, J.P. Perdew, Rehabilitation of the Perdew-Burke-Ernzerhof generalized gradient approximation for layered materials, Phys. Rev. B., 95 (8) (2017) 081105.
[20] J. Heyd, J.E. Peralta, G.E. Scuseria, R.L. Martin, Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional, J. Chem. Phys., 123 (17) (2005).
[21] M. Fuchs, M. Bockstedte, E. Pehlke, M. Scheffler, Pseudopotential study of binding properties of solids within generalized gradient approximations: The role of core-valence exchange correlation, Phys. Rev. B., 57 (4) (1998) 2134.
[22] A. Seidl, A. G?rling, P. Vogl, J.A. Majewski, M. Levy, Generalized Kohn-Sham schemes and the band-gap problem, Phys. Rev. B., 53 (7) (1996) 3764.
[23] Y. Wang, P. Wisesa, A. Balasubramanian, S. Dwaraknath, T. Mueller, Rapid generation of optimal generalized Monkhorst-Pack grids, Comput. Mater. Sci., 187 (2021) 110100.
[24] Y. Nassah, A. Benmakhlouf, L. Hadjeris, T. Helaimia, R. Khenata, A. Bouhemadou, S. Bin Omran, R. Sharma, S. Goumri Said, V. Srivastava, Electronic band structure, mechanical and optical characteristics of new lead-free halide perovskites for solar cell applications based on DFT computation, Bull. Mater. Sci., 46 (2) (2023) 55.
[25] C. Truesdell, Murnaghan’s Finite Deformation of an Elastic Solid (1952), in: An Idiot’s Fugitive Essays on Science: Methods, Criticism, Training, Circumstances, Springer, 1984, pp. 148-150.
[26] J. Wang, J. Li, S. Yip, D. Wolf, S. Phillpot, Unifying two criteria of Born: Elastic instability and melting of homogeneous crystals, Physica A: Statistical Mechanics and its Applications, 240 (1-2) (1997) 396-403.
[27] O. Senkov, D. Miracle, Generalization of intrinsic ductile-to-brittle criteria by Pugh and Pettifor for materials with a cubic crystal structure, Scientific reports, 11 (1) (2021) 4531.
[28] J.N. Hilfiker, T. Tiwald, Dielectric function modeling, in: Spectroscopic Ellipsometry for Photovoltaics: Volume 1: Fundamental Principles and Solar Cell Characterization, Springer, 2019, pp. 115-153.
[29] H. Kuzmany, H. Kuzmany, The dielectric function, Solid-State Spectroscopy: An Introduction, (1998) 101-120.
[30] M. Orazem, J. Esteban, O. Moghissi, Practical applications of the Kramers-Kronig relations, Corrosion, 47 (4) (1991) 248-259.