مجلة الجامعة الإسلامية للعلوم التطبيقية

    AI-Based Optimization of Submerged Arc Welding Using AISA Algorithm

Badis Lekouaghet, Mohammed Haddad and Noureddine, Hamouda

الكلمات مفتاحية: Artificial Intelligence; Optimization; Welding process; AISA algorithm; Submerged arc welding.

التخصص العام: Engineering

التخصص الدقيق: Manufacturing Technology

https://doi.org/10.63070/jesc.2025.022; Received 12 June 2025; Revised 11 August 2025; Accepted 20 August 2025. Available online 08 September 2025.
DownloadPDF
الملخص

The precision of parameter selection in submerged arc welding (SAW) significantly influences weld quality, strength, and efficiency in industrial manufacturing. Artificial intelligence offers advanced tools for addressing the complex, non-linear optimization challenges in welding processes where traditional trial-and-error methods fall short. This paper introduces the Adolescent Identity Search Algorithm (AISA), an AI-based, human-inspired optimization technique, to optimize SAW parameters. Implemented in MATLAB, the algorithm was applied to minimize bead width (BW)—a critical indicator of weld quality—by refining welding current, voltage, speed, and wire feed. Comparative analysis with the Rao-1 algorithm was conducted under varying population sizes and iteration counts. Results show that AISA consistently achieved a minimum bead width of 17.06 mm with a success rate exceeding 99%, outperforming Rao-1, which recorded a minimum of 17.23 mm under the same conditions. These findings demonstrate AISA’s robustness, stability, and adaptability in parameter optimization, confirming its potential as an effective tool for enhancing manufacturing precision

مراجع

[1]      K. Kalita, D. Burande, R. K. Ghadai, and S. Chakraborty, “Finite Element Modelling, Predictive Modelling and Optimization of Metal Inert Gas, Tungsten Inert Gas and Friction Stir Welding Processes: A Comprehensive Review,” Arch. Comput. Methods Eng., vol. 30, no. 1, pp. 271–299, Jan. 2023, doi: 10.1007/s11831-022-09797-6.

[2]      B. Lekouaghet, M. Haddad, and N. Hamouda, “Exploring Recent Metaphor-Based Algorithms for Optimizing TIG Welding Parameters,” in 2024 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC), IEEE, May 2024, pp. 1–5. doi: 10.1109/ICEEAC61226.2024.10576297.

[3]      T. Marwala and C. A. Leke, Handbook of machine learning: Volume 2: Optimization and decision making. World Scientific, 2019.

[4]      B. Eren, M. A. Guvenc, and S. Mistikoglu, “Artificial Intelligence Applications for Friction Stir Welding: A Review,” Metals and Materials International, vol. 27, no. 2. The Korean Institute of Metals and Materials, pp. 193–219, 2021. doi: 10.1007/s12540-020-00854-y.

[5]      M. Mezaache, O. F. Benaouda, and A. Kellai, “Maximizing welding efficiency: applying an improved whale optimization algorithm for parametric optimization of bead width in a submerged arc welding process,” Int. J. Adv. Manuf. Technol., vol. 134, no. 5, pp. 2737–2752, 2024, doi: 10.1007/s00170-024-14231-1.

[6]      D. Pendokhare and S. Chakraborty, “Optimizing plasma arc cutting processes using physics-based metaheuristic algorithms: a comparative analysis,” Int. J. Interact. Des. Manuf., 2024, doi: 10.1007/s12008-024-02136-y.

[7]      R. V. Rao, “Rao algorithms: Three metaphor-less simple algorithms for solving optimization problems,” Int. J. Ind. Eng. Comput., vol. 11, no. 1, pp. 107–130, 2020, doi: 10.5267/j.ijiec.2019.6.002.

[8]      J. Vora et al., “Optimization of activated tungsten inert gas welding process parameters using heat transfer search algorithm: With experimental validation using case studies,” Metals (Basel)., vol. 11, no. 6, 2021, doi: 10.3390/met11060981.

[9]      P. D. Skariya, M. Satheesh, and J. E. R. Dhas, “Optimizing parameters of TIG welding process using grey wolf optimization concerning 15CDV6 steel,” Evol. Intell., vol. 11, no. 1–2, pp. 89–100, 2018, doi: 10.1007/s12065-018-0161-5.

[10]    T. Joyce and J. M. Herrmann, “A Review of No Free Lunch Theorems, and Their Implications for Metaheuristic Optimisation BT  - Nature-Inspired Algorithms and Applied Optimization,” X.-S. Yang, Ed., Cham: Springer International Publishing, 2018, pp. 27–51. doi: 10.1007/978-3-319-67669-2_2.

[11]    E. Bogar and S. Beyhan, “Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems,” Appl. Soft Comput. J., vol. 95, p. 106503, Oct. 2020, doi: 10.1016/j.asoc.2020.106503.

[12]    R. V. Rao and D. P. Rai, “Optimisation of welding processes using quasi-oppositional-based Jaya algorithm,” J. Exp. Theor. Artif. Intell., vol. 29, no. 5, pp. 1099–1117, 2017.

[13]    W. Merrouche, B. Lekouaghet, and E. Bouguenna, “Artificial Search Algorithm for Parameters Optimization of Li-Ion Battery Electrical Model,” in 2023 International Conference on Decision Aid Sciences and Applications (DASA), IEEE, Sep. 2023, pp. 17–22. doi: 10.1109/DASA59624.2023.10286632.

[14]    B. Lekouaghet, M. Haddad, M. Benghanem, and M. A. Khelifa, “Identifying the unknown parameters of PEM fuel cells based on a human-inspired optimization algorithm,” Int. J. Hydrogen Energy, vol. 129, no. April, pp. 222–235, 2025, doi: 10.1016/j.ijhydene.2025.04.301.