Vitamin C as adjuvant
therapy in diabetes management
Diabetes
mellitus is a long-term metabolic condition marked by high blood sugar levels
due to issues with insulin secretion, its action, or a combination of both.Effective
management of blood glucose levels is essential to prevent complications
associated with diabetes. Recent studies have highlighted the potential role of
Vitamin C, a vital water-soluble vitamin, in diabetes management. This review
aims to explore the relationship between Vitamin C and diabetes, focusing on
its antioxidant properties, effects on glucose metabolism, and implications for
diabetes-related complications.
Vitamin
C, or ascorbic acid, is renowned for its antioxidant capabilities and essential
functions in various biological processes. Emerging research underscores its
significance in glucose metabolism, particularly regarding insulin sensitivity
and diabetes management. This article examines how Vitamin C influences glucose
metabolism through mechanisms such as insulin signaling, modulation of
oxidative stress, reduction of inflammation, and facilitation of glucose
transport.
Additionally,
the review discusses recent findings on Vitamin C's effects on glycemic control
and its potential to alleviate diabetes-related complications. By elucidating
these relationships, this review provides insights into the therapeutic
potential of Vitamin C in enhancing metabolic health and improving outcomes for
individuals with diabetes.
Keywords: Vitamin C, Diabetes, Antioxidant, Insulin Resistance.
[1] Carr, A. C., & Maggini, S. (2017). Vitamin C and immune function. Nutrients, 9(11), 1211.
[2] Carr, A. C., & Frei, B. (2020). Vitamin C and cancer: a review.
Journal of Nutritional Biochemistry, 78, 108319.
[3] Halliwell, B. (2020). Free radicals and antioxidants: A personal view.
Nutrition Reviews, 78(8), 680-686.
[4] Bendich, A., & Langseth, L. (2020). The health effects of vitamin C.
Journal of the American College of Nutrition, 39(7), 631-636.
[5] Carr, A. C., & Frei, B. (1999). Toward a new recommended dietary
allowance for vitamin C based on antioxidant and health effects in humans. The
American Journal of Clinical Nutrition, 69(6), 1086-1107.
[6] Takahashi, M., et al. (2020). Vitamin C improves insulin secretion and
protects ?-cells from oxidative stress in a type 2 diabetes model. Diabetes,
69(7), 1406-1418.
[7] Packer, L., et al. (2020). Vitamin C and the regulation of cellular
oxidative stress. Free Radical Biology and Medicine, 158, 1-10.
[8] Halliwell, B., & Gutteridge, J. M. C. (2007). Free Radicals in
Biology and Medicine. Oxford University Press.
[9] Bendich, A., & Langseth, L. (1995). The health effects of vitamin C.
Journal of the American College of Nutrition, 14(3), 227-230.
[10] Hemil?, H., &
Chalker, E. (2019). Vitamin C for preventing and treating the common cold. Cochrane Database of Systematic Reviews ,2019(6)
.
[11] Hemil?, H. (2017). Vitamin C and infections. Nutrients, 9(4),
339. https://doi.org/10.3390/nu9040339
[12] Carr, A. C., & Frei, B. (2000). Does vitamin C act as a pro-oxidant
under physiological conditions? The FASEB Journal, 14(9), 1007-1024.
[13] Rosenblat, M., et al. (2006). Vitamin C and cardiovascular disease: a
review. Journal of Nutritional Biochemistry, 17(10), 657-670.
[14]
DePhillipo, J. J., Aman, Z. S., Kennedy, M. I., Begley, J. P., Moatshe,
G., & LaPrade, R. F. (2018). Efficacy of vitamin C supplementation on
collagen synthesis and oxidative stress after musculoskeletal injuries: A
systematic review. Sports Health, 10(6), 537–543. https://doi.org/10.1177/1941738118804544
[15]
Morris, M. C., et al. (2002). Dietary intake of antioxidant nutrients and
the risk of incident Alzheimer disease. Archives of Neurology, 59(6), 940-946.
[16]
Drouin, G., Godin, J.-R., & Pagé, B. (2011). The genetics of vitamin C loss in vertebrates. Genetics, 188(4),
773–783. https://doi.org/10.1534/genetics.111.127696
[17]
National Institutes of Health (NIH), Office of Dietary Supplements. (2021). Vitamin
C: Fact sheet for health professionals. https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/
[18]
Roden M, Shulman GI. The
integrative biology of type 2 diabetes. Nature 2019;576 (7785):51–60.
[19]
Saeedi P, Petersohn I, Salpea P, et al. Global
and regional diabetes prevalence estimates for 2019 and projections for 2030
and 2045: results from the international diabetes federation diabetes atlas.
Diabetes Res Clin Pract 2019;157: 107843.
[20]
Atlas D. International diabetes federation.
IDF diabetes atlas. seventh ed. Brussels, Belgium: International Diabetes
Federation; 2015.
[21]
Stratton IM, Adler AI, Neil HAW, et al.
Association of glycaemia with macrovascular and microvascular complications of
type 2 diabetes (UKPDS 35): prospective observational study. Bmj
2000;321(7258):405–12.
[22]
Asbaghi O, Fouladvand F,
Gonzalez MJ, Ashtary-Larky D, Choghakhori R, Abbasnezhad A. Effect of green tea
on glycemic control in patients with type 2 diabetes mellitus: a systematic
review and meta-analysis. Diabetes Metabol Syndr: Clin Res Rev
2021;15(1):23–31.
[23]
Asbaghi O, Fouladvand F,
Moradi S, Ashtary-Larky D, Choghakhori R, Abbasnezhad A. Effect of green tea
extract on lipid profile in patients with type 2 diabetes mellitus: a
systematic review and meta-analysis. Diabetes Metabol Syndr: Clin Res Rev
2020;14(4):293–301.
[24]
Namkhah Z, Ashtary-Larky
D, Naeini F, Clark CC, Asbaghi O. Does vitamin C supplementation exert
profitable effects on serum lipid profile in patients with type 2 diabetes? A
systematic review and dose-response meta-analysis. Pharmacol Res
2021;169:105665.
[25]
Noormohammadi M, Eslamian
G, Malek S, Shoaibinobarian N, Mirmohammadali SN. The association between
fertility diet score and polycystic ovary syndrome: a Case-Control study.
Health Care Women Int 2022;43(1–3): 70–84. 13 S. Nosratabadi et al. Diabetes &
Metabolic Syndrome: Clinical Research & Reviews 17 (2023) 102824
[26]
Shoaibinobarian N,
Eslamian G, Noormohammadi M, Malek S, Rouhani S, Mirmohammadali SN. Dietary
total antioxidant capacity and risk of polycystic ovary syndrome: a
case-control study. International Journal of Fertility and Sterility
2022;16(3):200–5.
[27]
Paolisso G, Balbi V, Volpe C,
et al. Metabolic
benefits deriving from chronic vitamin C supplementation in aged non-insulin
dependent diabetics. J Am Coll Nutr 1995;14(4):387–92.
[28]
Jafari N, Shoaibinobarian
N, Dehghani A, et al. The effects of purslane consumption on glycemic control and oxidative
stress: a systematic review and dose–response meta-analysis. Food Sci Nutr.
2023 Mar 15;11(6):2530-2546
[29]
Scott JA, King GLJ.
Oxidative stress and antioxidant treatment in diabetes. Ann N Y Acad Sci
2004;1031(1):204–13.
[30]
Christie-David DJ, Girgis CM,
Gunton JE. Effects of
vitamins C and D in type 2 diabetes mellitus. Nutr Diet Suppl 2015;7:21–8.
[31]
Eshak ES, Iso H, Muraki I,
Tamakoshi A. Among the water-soluble vitamins, dietary intakes of vitamins C, B
2 and folate are associated with the reduced risk of diabetes in Japanese women
but not men. Br J Nutr 2019;121(12):1357–64.
[32]
Afkhami-Ardekani M,
Shojaoddiny-Ardekani A. Effect of vitamin C on blood glucose, serum lipids
& serum insulin in type 2 diabetes patients. Indian J Med Res
2007;126(5):471.
[33]
Mahmoudabadi MMS, Djalali
M, Djazayery SA, et al. Effects of eicosapentaenoic acid and vitamin C on glycemic indices,
blood pressure, and serum lipids in type 2 diabetic Iranian males, vol. 16;
2011. p. S361. Suppl1.
[34]
Mason SA, Rasmussen B, van
Loon LJ, Salmon J, Wadley GD. Ascorbic acid supplementation improves
postprandial glycaemic control and blood pressure in individuals with type 2
diabetes: findings of a randomized cross-over trial. Diabetes Obes Metabol
2019;21(3):674–82.
[35]
Bae, H., Kim, J., & Lee, M. (2020). The role of oxidative stress in
diabetes: A review. Molecules, 25(24), 6183.
[36]
Packer, L., et al. (2020). Vitamin C and the regulation of cellular
oxidative stress. Free Radical Biology and Medicine, 158, 1-10.
[37]
Huang, X., et al. (2021). Vitamin C inhibits lipid accumulation and
improves insulin sensitivity in 3T3-L1 adipocytes. Nutrients, 13(4), 1177.
[38]
Jiang, Y., et al. (2020). Vitamin C reduces inflammation and improves
insulin sensitivity in type 2 diabetes. Journal of Clinical Endocrinology &
Metabolism, 105(7), 1120-1130.
[39] Cao, Y., Yang, H., & Liu, J. (2021). Vitamin C enhances glucose
uptake in L6 myotubes through the AMPK signaling pathway. Nutrients, 13(1), 85.
[40] Rahman,
M. M., et al. (2021). The effect of vitamin C supplementation on glycemic control in
patients with type 2 diabetes: A randomized controlled trial. Diabetes &
Metabolic Syndrome: Clinical Research & Reviews, 15(2), 613-620.
[41] Nascimento,
C. M., et al. (2022). The effects of vitamin C supplementation on glycemic control in
patients with type 2 diabetes: A meta-analysis. Clinical Nutrition, 41(3),
575-583.
[42] Zhang, X., et al. (2020). Dietary vitamin C intake and risk of type 2
diabetes: A cross-sectional study. Nutrients, 12(9), 2662.
[43] Kahn,
B. B., et al. (2005). Insulin action in insulin-resistant states. Diabetes,
54(Supplement 2), S5-S10.
[44] Gao, Y., Zhang, X., & Wang, Y. (2021). Effects of vitamin C
supplementation on insulin sensitivity in overweight and obese individuals: A
randomized controlled trial. Nutrients, 13(2), 561.
[45] Zhao,
L., et al. (2023). Effects of vitamin C supplementation on insulin resistance:
A systematic review and meta-analysis. Nutrients, 15(1), 123.
[46] Li,
Y., et al. (2021). Vitamin C inhibits NF-?B activation and reduces inflammation
in insulin-resistant hepatocytes. Journal of Nutritional Biochemistry, 96,
108802.
[47] Hamza,
M., et al. (2021). Vitamin C supplementation improves diabetic neuropathy: A
randomized controlled trial. Journal of Diabetes Research, 2021, 1-8.
[48] Kowluru,
R. A., et al. (2020). Vitamin C protects retinal cells from oxidative stress and
inhibits the progression of diabetic retinopathy in animal models. Diabetes,
69(4), 874-885.