Diversity of Information Diffusion in Online Social Networks: A
Comparative Study
Online social
networks are being created for social interactions and those users that fulfill
this paradigm are the real users of online social networks. As these
interactions became diverse, the information that these diverse interactions
were carrying also flood the online social networks, thereby creates the diffusions
of this diverse information and which in turn creates the numerous phenomena
among the users of online social networks. These phenomena are so diverse that as
you will change the scale of your view, you will notice a different phenomenon
that has been adopted by online social network under scanner, from macroscopic
view to microscopic view you will notice this flip of phenomena. Keeping an eye
on the already sorted out diversity of works, that are hidden or prevalent, we
are going to lay a concrete survey to this diversity in this paper by keeping
the motive that every existing attempt paves a way for the new one.
Keywords:
Social networks, Online social networks, Social Network Analysis (SNA), Information
diffusion, Influential user, Spam, Online social graph.
[1]
Li, M., Wang, X., Gao, K., & Zhang, S. (2017). A
Survey on Information Diffusion in Online Social Networks: Models and Methods. Information,
8(4), 118. https://doi.org/10.3390/info8040118
[2]
Iacopini, I., Karsai, M., & Barrat,
A. (2024). The temporal
dynamics of group interactions in higher-order social networks. Nature
Communications, 15, 7391. https://doi.org/10.1038/s41467-024-50918-5
[3]
Wong, A., Ho, S., Olusanya, O.,
Antonini, M. V., & Lyness, D. (2021). The use of social media and online communications in times
of pandemic COVID-19. Journal of the Intensive Care Society, 22(3),
255–260. https://doi.org/10.1177/1751143720966280.
[4]
Guille, A.,
Hacid, H., Favre, C., &Zighed, D. A. (2013). Information Diffusion in
Online Social Networks: A Survey. SIGMOD Record, 42(2), 17-28. https://doi.org/10.1145/2503792.2503797
[5]
Kurka, D. B.
(2015). Online social networks: Knowledge extraction from information
diffusion and analysis of spatio-temporal phenomena (Dissertation).
Retrieved from [Institution repository link]
[6]
Sima, D.,
Fountain, T., & Karasuk, P. (n.d.). Advanced Computer Architecture: A
Design Space Approach (1st ed.). Pearson.
[7]
Cole, W. D.
(n.d.). An Information Diffusion Approach for Detecting Emotional Contagion
in Online Social Networks (Master’s thesis, Arizona State University).
Retrieved from [Institution repository link]
[8]
Tenenbaum, A.
S. (n.d.). Computer Networks (1st ed.). Pearson.
[9]
Sermpezis, P., & Spyropoulos, T. (2013).
Information diffusion in heterogeneous networks: The configuration model
approach. In IEEE INFOCOM 2013 (pp. 3261-3266). IEEE. https://doi.org/10.1109/INFCOM.2013.6566986
[10] Kumar, K. P. K. (2015). Information
Diffusion Modeling to Counter Semantic Attacks in Online Social Networks
(PhD thesis). Retrieved from http://hdl.handle.net/10603/123660
[11] Sun, Q., Li, Y., Hu, H., & Cheng, S. (2019).A
model for competing information diffusion in social networks. IEEE Access,
7, 67916-67922. https://doi.org/10.1109/ACCESS.2019.2918812
[12] Arnaboldi, V., Conti, M., Passarella, A., & Dunbar,
R. (2017).Online social networks and information diffusion: The role
of ego networks. Online Social Networks and Media, 1, 44-55.
https://doi.org/10.1016/j.osnem.2017.04.001
[13] Wang, F., Wang, H., Xu, K., Wu, J., & Jia, X.
(2013). Characterizing information diffusion in online social networks
with linear diffusive model. In Proceedings - 2013 IEEE 33rd International
Conference on Distributed Computing Systems, ICDCS 2013 (pp. 307-316).
IEEE. https://doi.org/10.1109/ICDCS.2013.14
[14] arXiv:1802.01729
[15] Behera, P. C. (2020). Data mining technique for
tracking of information diffusion in online social network. International
Journal of Latest Research in Science and Technology, 5.
[16] Han, J., Kamber, M., & Pei, J. (n.d.).Data
Mining (3rd ed.).
[17] Erlandsson, F., Br?dka, P., Borg, A., & Johnson, H.
(2016). Finding influential users in social media using association
rule learning. Entropy, 18(5), 164.
https://doi.org/10.3390/e18050164
[18] Wang, F., Wang, H., & Xu, K. (n.d.).
Dynamic Mathematical Modeling of Information Diffusion in Online Social
Networks. Arizona State University. Retrieved from [Arizona State University
link].
[19] Cazabet, R., Amblard, F., & Hanachi, C. (2010).
Detection of overlapping communities in dynamical social networks. In 2010
IEEE International Conference on Social Computing (pp. 309-314). IEEE.
https://doi.org/10.1109/SocialCom.2010.51
[20] Wu, S. (n.d.).The Dynamics of Information
Diffusion on Online Social Networks (PhD thesis).
[21] Guille, A., Hacid, H., Favre, C., &Zighed, D. A.
(2013). Information diffusion in online social networks: A survey. SIGMOD
Record, 42(2), 17–28. https://doi.org/10.1145/2503792.2503797
[22] Wang, C. (2014). Jumping over the network
threshold: Information diffusion on information sharing websites. PhD
Thesis, City University of Hong Kong. Retrieved from
https://scholars.cityu.edu.hk/en/theses/theses(6f918870-1270-4232-bb3c-e66ce4bb4a05).html
[23] Das, A., Gollapudi, S., &Kiciman, E. (2014).
Effect of persuasion on information diffusion in social networks.
[24] Silva, A., Guimar?es, S., Meira Jr., W., & Zaki, M.
(2013).ProfileRank: Finding relevant content and influential users
based on information diffusion. https://doi.org/10.1145/2501025.2501033
[25] Matsubara, Y., Sakurai, Y., Prakash, B. A., Li, L.,
&Faloutsos, C. (2012).Rise and fall patterns of information
diffusion: Model and implications. Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp.
6–14). https://doi.org/10.1145/2339530.2339537
[26] Yang, Y., Tang, J., Leung, C. W., Sun, Y., Chen, Q., Li,
J., & Yang, Q. (2015). RAIN: Social role-aware information
diffusion. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI'15) (pp. 367–373).
[27] Liu, L., Qu, B., Chen, B., Hanjalic, A., & Wang, H.
(2017). Modeling of information diffusion on social networks with
applications to WeChat. arXiv:1704.03261
[28] Ren, X., & Zhang, Y. (2016). Predicting
information diffusion in social networks with users’ social roles and topic
interests. In Ma, S. et al. (Eds.), Information RetrievalTechnology. AIRS
2016. Lecture Notes in Computer Science, vol. 9994 (pp. 343–354).
Springer. https://doi.org/10.1007/978-3-319-48051-0_30
[29] Susarla, A., Oh, J. H., & Tan, Y. (2012).Social
networks and the diffusion of user-generated content: Evidence from YouTube. Information
Systems Research, 23(1), 23-41.
https://doi.org/10.1287/isre.1110.0404
[30] Taxida, L., Fischer, P. M., De Nies, T., Mannens, E.,
Verborgh, R., & Van de Walle, R. (2015).Modeling information
diffusion in social media as provenance in W3C Prov. ACM Transactions on
the Web.
[31] Farajtabar, M., Gomez-Rodriguez, M., Wang, Y., Li, S.,
Zha, H., & Song, L. (2015). Co-evolutionary dynamics of
information diffusion and network structure. In Proceedings of the 24th
International Conference on World Wide Web (pp. 619–620). ACM.
[32] Dhamal, S., Prabuchandran, K. J., &Narahari, Y.
(2015).A multi-phase approach for improving information diffusion in
social networks. In The 14th International Conference on Autonomous Agents
& Multiagent Systems (AAMAS 2015), May 4–8, 2015, Istanbul, Turkey.
[33] Huang, J.-P., Wang, C.-Y., & Wei, H.-Y. (2011).
Strategic information diffusion through online social networks. In Proceedings
of the 4th International Symposium on Applied Sciences in Biomedical and
Communication Technologies (ISABEL '11). ACM. https://doi.org/10.1145/2093698.2093786
[34] Taxidou, I., & Fischer, P. M. (2014).
Online analysis of information diffusion in Twitter. In Proceedings of the
23rd International Conference on World Wide Web (WWW '14 Companion) (pp.
1313–1318). ACM. https://doi.org/10.1145/2567948.2580050
[35] Jiang, Y., & Jiang, J. C. (2015). Diffusion
in social networks: A multi-agent perspective. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 45(2), 198–213.
https://doi.org/10.1109/TSMC.2014.2339198
[36] Weng, L. (n.d.).Information Diffusion on
Online Social Networks (PhD thesis, Indiana University). Retrieved from http://hdl.handle.net/2027.42/89838
[37] Matsubara, Y., Sakurai, Y., Prakash, B. A., Li, L.,
&Faloutsos, C. (2017).Nonlinear dynamics of information diffusion
in social networks. ACM Transactions on the Web, 11(2),
Article 11, 40 pages. https://doi.org/10.1145/3057741
[38] Wang, F., Wang, H., & Xu, K. (n.d.).
Dynamic Mathematical Modeling of Information Diffusion in Online Social
Networks. Arizona State University. Retrieved from https://www2.cs.arizona.edu/~bzhang/CCW2012/slides/xu.pdf
[39] Farajtabar, M., Wang, Y., Rodriguez, M., Li, S., Zha,
H., & Song, L. (2015). COEVOLVE: A joint point process model for
information diffusion and network co-evolution. Journal of Machine Learning
Research, 18, 1305–1353.
[40] Yang, C., Sun, M., Liu, H., Han, S., Liu, Z., &
Luan, H. (2018). Neural Diffusion Model for Microscopic Cascade
Prediction. arXiv:1812.08933
[41] Gatti, M. A. de C., Appel, A. P., dos Santos, C. N.,
Pinhanez, C. S., Cavalin, P. R., & Neto, S. B. (2013).A
simulation-based approach to analyze information diffusion in microblogging
online social network. In 2013 Winter Simulations Conference (WSC)
(pp. 1685-1696). IEEE. https://doi.org/10.1109/WSC.2013.6721550
[42] Kim, H., &Yoneki, E. (2012). Influential
neighbours selection for information diffusion in online social networks. In 2012
21st International Conference on Computer Communications and Networks (ICCCN)
(pp. 1-7). IEEE. https://doi.org/10.1109/ICCCN.2012.6289230
[43] Hu, Y., Song, R. J., & Chen, M. (2017).
Modeling for information diffusion in online social networks via hydrodynamics.
IEEE Access, 5, 128-135.
https://doi.org/10.1109/ACCESS.2016.2605009
[44] Davoudi, A., & Chatterjee, M. (2016).
Prediction of information diffusion in social networks using dynamic carrying
capacity. In 2016 IEEE International Conference on Big Data (Big Data)
(pp. 2466–2469). IEEE. https://doi.org/10.1109/BigData.2016.7840883
[45] Saito, K., Kimura, M., Ohara, K., &Motoda, H.
(2013). Detecting changes in information diffusion patterns over
social networks. ACM Transactions on Intelligent Systems and Technology,
4(3), Article 55. https://doi.org/10.1145/2499862
[46] Wang, Z., Yang, Y., Pei, J., & Chen, E. (2016).
Activity Maximization by Effective Information Diffusion in Social Networks. IEEE
Transactions on Knowledge and Data Engineering, PP.
https://doi.org/10.1109/TKDE.2017.2740284.
[47] Kim, H., &Yoneki, E. (2012). Influential
Neighbours Selection for Information Diffusion in Online Social Networks. 2012
21st International Conference on Computer Communications and Networks, ICCCN
2012 - Proceedings, 1–7. https://doi.org/10.1109/ICCCN.2012.6289230.
[48] Wang, Q. (2016). Towards Understanding
Information Diffusion about Infrastructure, An Empirical Study of Twitter Data.
Retrieved from https://www.irbnet.de/daten/iconda/CIB_DC29666.pdf.
[49] Farajtabar, M., Wang, Y., Gomez-Rodriguez, M., Li, S.,
Zha, H., & Song, L. (2017). COEVOLVE: A Joint Point Process Model
for Information Diffusion and Network Evolution. Journal of Machine
Learning Research, 18, 1305–1353.
[50] Du, N., Song,
L., Woo, H., &Zha, H. (2013).Uncover Topic-Sensitive
Information Diffusion Networks. AISTATS.
[51] Bakshy, E. (2011). Information Diffusion and
Social Influence in Online Networks. PhD Thesis, University of
Michigan. Retrieved from http://hdl.handle.net/2027.42/89838.
[52] Jalali, M. S., Ashouri rad, A., Herrera-Restrepo, O.,
& Zhang, H. (2016).Information Diffusion through Social Networks:
The Case of an Online Petition. Expert Systems with Applications, 187–197.
https://doi.org/10.1016/j.eswa.2015.09.014.
[53] Jiang, C., Chen, Y., & Liu, K. J. R. (2014).
Modeling Information Diffusion Dynamics over Social Networks. ICASSP, IEEE
International Conference on Acoustics, Speech and Signal Processing -
Proceedings, 1095–1099. https://doi.org/10.1109/ICASSP.2014.6853766.
[54] Mahdi, M. K., &Almanory, H. N. (2019).
Modeling the Information Diffusion Overlapped Nodes Using SFA-ICBDMA. IJRTE.
https://doi.org/10.35940/ijrte.B1710.078219.
[55] Wang, F., Wang, H., Xu, K., Wu, J., & Jia, X.
(2013). Characterizing Information Diffusion in Online Social Networks
with Linear Diffusive Model. In 2013 IEEE 33rd International Conference on
Distributed Computing Systems (pp. 307–316). IEEE.
https://doi.org/10.1109/ICDCS.2013.105.
[56] Tanwar, P., & Priyanka. (2019). Spam
Diffusion in Social Networking Media Using Dirichlet Allocation. IJITEE.
Retrieved from https://www.ijitee.org/wp-content/uploads/papers/v8i12/I7898078919.pdf.
[57] Bright, J., Margetts, H., Hale, S., &Yasseri, T.
The Use of Social Media for Research and Analysis: A Feasibility Study. Oxford
Institute Press. Retrieved from
https://www.bl.uk/collection-items/use-of-social-media-for-research-and-analysis-a-feasibility-study#.
[58] Obregon, J., Song, M., & Jung, J.-Y. (2019).InfoFlow:
Mining Information Flow Based on User Community in Social Networking Services. IEEE
Access, 7, 48024–48036.
[59] Jain, L., &Katarya, R. (2019). Discover
Opinion Leader in Online Social Network Using Firefly Algorithm. Expert
Systems with Applications, 122, 1–15.
[60] Dai, J., Wang, B., Sheng, J., Sun, Z., Khawaja, F. R.,
Ullah, A., Dejene, D. A., & Duan, G. (2019). Identifying
Influential Nodes in Complex Networks Based on Local Neighbor Contribution. IEEE
Access, 7, 131719–131731.
[61] Pothineni, D., Mishra, P., & Rasheed, A. (2012).
Social Thermodynamics: Modeling Communication Dynamics in Social Networks. In The
First International Conference on Future Generation Communication Technologies
(pp. 76–82). IEEE.
[62] Alemany, J., Del Val, E., Alberola, J. M., &
Garc?a-Fornés, A. (2019). Metrics for Privacy Assessment when Sharing
Information in Online Social Networks. IEEE Access, 7,
143631–143645.
[63] Al-Azim, N. A. R., Gharib, T. F., Afify, Y., &
Hamdy, M. (2020). Influence Propagation: Interest Groups and Node
Ranking Models. Physica A: Statistical Mechanics and its Applications,
124247.
[64] Carey, A. (200). Global Information Workforce
Study. Retrieved from www.idc.com.
[65] Gregg, M., Watkins, S., Mays, G., Ries, C., Bandes, R.
M., & Franklin, B. (2006). Hack the Stack: Using Snort and
Ethereal to Master the 8 Layers of an Insecure Network. Elsevier.
[66] Horowitz, E., Sahni, S., & Rajasekaran, S.
(2008). Fundamentals of Computer Algorithms (2nd ed.).
[67] Rosen, K. H., &Krithivasan, K.Discrete
Mathematics and Its Applications (McGraw-Hill).
[68] Anh, N., Son, D., Thu, H., Kuznetsov, S., & Vinh, N.
T. Q. (2018). A Method for Determining Information Diffusion Cascades
on Social Networks. Eastern-European Journal of Enterprise Technologies,
6, 61–69. https://doi.org/10.15587/1729-4061.2018.150295.
[69] Ganai, A.H.,
Hashmy, R. & Khanday, H.A. Finding Information Diffusion’s Seed Nodes in
Online Social Networks Using a Special Degree Centrality. SN COMPUT.
SCI. 5, 333 (2024). https://doi.org/10.1007/s42979-024-02683-x
[70] Ganai, A.H.,
Hashmy, R., Khanday, H.A. et al. IDT-Cascade: a novel
information dissemination tree model for influential cascade detection in
online social networks. Int. j. inf. tecnol. (2025).
https://doi.org/10.1007/s41870-025-02573-2