مجلة الجامعة الإسلامية للعلوم التطبيقية

Power Optimization in MIMO-NOMA VLC Systems Using Fractional and Dynamic Frequency Reuse

, Nesrine Titi, Sofiane Haddad, Ammar Soukkou

التخصص العام: Engineering

التخصص الدقيق: Electronics, VLSI and SoC

https://doi.org/10.63070/jesc.2025.013
DownloadPDF
الملخص

This paper investigates power allocation strategies for enhancing the achievable sum rate in indoor Multi-User Visible Light Communication (MUVLC) systems using Multiple-Input Multiple-Output Non-Orthogonal Multiple Access (MIMO-NOMA). Two frequency reuse methods—Fractional Frequency Reuse (FFR) and Dynamic Frequency Reuse (DFR)—are proposed and evaluated against the existing Normalized Gain Difference Power Allocation (NGDPA) technique. Simulation results for a (2×2) MIMO-NOMA-VLC system show that while FFR can offer substantial performance improvements under favorable conditions, its effectiveness diminishes and may even underperform in specific scenarios. In contrast, DFR consistently outperforms NGDPA across a range of network conditions, demonstrating robust and reliable sum rate enhancement. This consistent adaptability makes DFR a more effective and preferred solution for optimizing power allocation and maximizing spectral efficiency in indoor VLC environments.

 

Keywords: Multiple-input, Multiple-output, Non-orthogonal multiple access, Visible light communication systems, Power allocation methods, Fractional Frequency Reuse, Dynamic Frequency Reuse.

مراجع

[1] H. Wang, F. Wang, and R. Li, “Enhancing power allocation efficiency of NOMA aided-MIMO downlink VLC networks,” Opt. Commun. 454, 124497 (2020).

[2] V. Dixit and A. Kumar, “BER analysis of dynamic FOV based MIMO-NOMA-VLC system,” AEU-Int. J. Electron. Commun. 142, 153989 (2021).

[3] T. Dogra and M.R. Bharti, “User pairing and power allocation strategies for downlink NOMA-based VLC systems: An overview,” AEU-Int. J. Electron. Commun. 149, 154184 (2022).

[4] Y. Wu, Y. Hu, Z. Wan, et al., “Joint security enhancement and PAPR mitigation for OFDM-NOMA VLC systems,” Opt. Commun. 508, 127719 (2022).

[5]   V. Dixit and A. Kumar, “An exact BER analysis of NOMA-VLC system with imperfect SIC and CSI,” AEU-Int. J. Electron. Commun. 138, 153864 (2021).

[6] A. Adnan, Y. Liu, C.-W. Chow, et al., “Analysis of non-Hermitian symmetry (NHS) IFFT/FFT Size Efficient OFDM for multiple-client Non-Orthogonal Multiple Access (NOMA) visible light communication (VLC) system,” Opt. Commun. 472, 125991 (2020).

[7]  Q. Zhao, J. Jiang, Y. Wang, et al., “A low complexity power allocation scheme for NOMA-based indoor VLC systems,” Opt. Commun. 463, 125383 (2020).

[8]  A. Naz, S. Baig, and  H.M. Asif, “Non Orthogonal Multiple Access (NOMA) for broadband communication in smart grids using VLC and PLC,” Optik 188, 162–171 (2019).

[9]  U. Ghafoor, M. Ali, H.Z. Khan, et al., “NOMA and future 5G & B5G wireless networks: A paradigm,” J. Netw. Comput. Appl. 204, 103413 (2022).

[10] B. Lin, Z. Ghassemlooy, X. Tang, et al., “Experimental demonstration of optical MIMO NOMA-VLC with single carrier transmission,” Opt. Commun. 402, 52–55 (2017).

[11] A. Akbar, S. Jangsher, and F.A. Bhatti, “NOMA and 5G emerging technologies: A survey on issues and solution techniques,” Comput. Netw. 190, 107950 (2021).

[12] Z. Liu, G. Hou, Y. Yuan, et al., “Robust resource allocation in two-tier NOMA heterogeneous networks toward 5G,” Comput. Netw. 176, 107299 (2020).

[13] H. Sharma and R.K. Jha, “VLC enabled hybrid wireless network for B5G/6G communications,” Wirel. Pers. Commun. 124, 1741–1771 (2022).

[14] H. Hameed, A. Ahmed, and U.U. Fayyaz, “Single-channel phaseless blind source separation,” Telecommun. Syst. 80, 469–475 (2022).

[15] P. Meena, M.B. Pal, P.K. Jain, et al., “6G communication networks: introduction, vision, challenges, and future directions,” Wirel. Pers. Commun. 125, 1097–1123 (2022).

[16] S.A.H. Mohsan, A. Mazinani, H.B. Sadiq, et al., “A survey of optical wireless technologies: Practical considerations, impairments, security issues and future research directions,” Opt. Quantum Electron. 54, 187 (2022).

[17] D. Astharini, M. Asvial, and D. Gunawan, “Performance of signal detection with trellis code for downlink non-orthogonal multiple access visible light communication,” Photonic Netw. Commun. 43, 185–192 (2022).

[18] C. Chen, W.-D. Zhong, H. Yang, et al., “On the performance of MIMO-NOMA-based visible light communication systems,” IEEE Photonics Technol. Lett. 30, 307–310 (2017).

[19] V. Dixit and A. Kumar, “An exact error analysis of multi-user RC/MRC based MIMO-NOMA-VLC system with imperfect SIC,” IEEE Access 9, 136710–136720 (2021).

[20] H. Li, Z. Huang, Y. Xiao, et al., “A power and spectrum efficient NOMA scheme for VLC network based on hierarchical pre-distorted LACO-OFDM,” IEEE Access 7, 48565–48571 (2019).

[21] G.N. Tran and S. Kim, “Performance analysis of short packets in NOMA VLC systems,” IEEE Access 10, 6505–6517 (2022).

[22] A. Adnan, Y. Liu, C.-W. Chow, et al., “Demonstration of non-hermitian symmetry (NHS) IFFT/FFT size efficient OFDM non-orthogonal multiple access (NOMA) for visible light communication,” IEEE Photonics J. 12, 1–5 (2020).

[23] B. Lin, Q. Lai, Z. Ghassemlooy, et al., “A machine learning based signal demodulator in NOMA-VLC,” J. Light. Technol. 39, 3081–3087 (2021).

[24] S. Feng, T. Bai, and L. Hanzo, “Joint power allocation for the multi-user NOMA-downlink in a power-line-fed VLC network,” IEEE Trans. Veh. Technol. 68, 5185–5190 (2019).

[25] J. Shi, J. He, K. Wu, et al., “Enhanced performance of asynchronous multi-cell VLC system using OQAM/OFDM-NOMA,” J. Light. Technol. 37, 5212–5220 (2019).

[26] E.M. Almohimmah, and M.T. Alresheedi, “Error analysis of NOMA-based VLC systems with higher order modulation schemes,” IEEE Access 8, 2792–2803 (2019).

[27] Q. Li, T. Shang, T. Tang, et al., “Optimal power allocation scheme based on multi-factor control in indoor NOMA-VLC systems,” IEEE Access 7, 82878–82887 (2019).

[28] Y. Yap?c? and I. Güvenç, “NOMA for VLC downlink transmission with random receiver orientation,” IEEE Trans. Commun. 67, 5558–5573 (2019).

[29] A. Al Hammadi, P.C. Sofotasios, S. Muhaidat, et al., “Non-orthogonal multiple access for hybrid VLC-RF networks with imperfect channel state information,” IEEE Trans. Veh. Technol. 70, 398–411 (2020).

[30] S.C. Lam and X.N. Tran, “Fractional frequency reuse in ultra dense networks,” Phys. Commun. 48, 101433 (2021).

[31] A. Onim, S. Musyoki, and P. Kihato, “Selection of optimal SINR threshold in fractional frequency reuse by comparing Otsu’s and entropy method,” Heliyon 8, e11736 (2022).

[32] H.C. Mora, N.O. Garz?n, and C. de Almeida, “On the cellular spectral efficiency of MC-CDMA systems with MMSE multiuser detector employing fractional and soft frequency reuse,” AEU-Int. J. Electron. Commun. 84, 34–45 (2018).

[33] D. Tsolkas, N. Passas, and L. Merakos, “Enabling device discovery transmissions in LTE networks with fractional frequency reuse,” Comput. Netw. 88, 149–160 (2015).

[34] H. Liu, P. Xia, Y. Chen, et al., “Interference graph-based dynamic frequency reuse in optical attocell networks,” Opt. Commun. 402, 527–534 (2017).

[35] N. Titi, S. Haddad, A. Soukkou, F. Aknouche and H. E. Djema, "Power Allocation Optimization Using Water-Filling Technique for MIMO-NOMA-Based Visible Light Communication Systems," 2024 International Conference on Advances in Electrical and Communication Technologies (ICAECOT), Setif, Algeria, 2024, pp. 1-6, doi: 10.1109/ICAECOT62402.2024.10829012.