مجلة الجامعة الإسلامية للعلوم التطبيقية

Synergy of (L1, H2, H?) Norms for Nonlinear Optimal PEMFC Dynamic MIMO Model Reduction using a Novel ANN-BBO Approach 

Zohra Touati,, Slami Saadi, Hibat errahmane Benmessaoud, Abdelaziz Rabehi 

التخصص العام: Engineering

التخصص الدقيق: Hydrogen, Biofuel and Fuel Cell Science, Engineering & Technology

https://doi.org/10.63070/jesc.2025.010
DownloadPDF
الملخص

In this work, we present an optimal reduced order nonlinear dynamic model for proton exchange membrane fuel cell (PEMFC) using the minimization of error between original and reduced order models via (L1, H2, H?) norms synergy optimized with biogeography-based optimization (BBO) Algorithm. The data necessary to form the autoregressive exogenous (ARX) artificial neural network (ANN) model are generated by the simulation of the dynamic model of the nonlinear PEMFC500w differential equations to extract space state matrices values. This approach is compared with Balanced Truncation (BT) model reduction method and illustrated through simulation results.

Keywords: Norms (L1, H2, H?); ANN; PEMFC; Order reduction; Balanced Truncation; Biogeography-based optimization. 

مراجع

[1] E.J. Davison, “A Method for Simplifying Linear Dynamic Systems”, IEEE. Transaction on Automatic Control, vol. AC-11, pp.93-101, January 1966.

[2] B.C. Moore, “Principal Component Analysis in Linear Systems: Controllability, Observability and Model Reduction”, IEEE Transaction on Automatic Control,vol. AC-26, pp. 17-32, 1981.

[3] D.A. Wilson, “Optimal Solution of Model Reduction Problem”, Proc. IEE, vol. 117, June 1970.

[4] D.A. Wilson, “Model Reduction for Multivariable Systems”, Int. J. Contr., vol. 20, pp.57-64, 1974.

[5]   S. Gugercin , A. C. Antoulas , C. Beattie " A Rational Krylov Iteration  for optimal H2 model reduction  ",

Proceedings of the 17the international Symposium on Mathematical Theory of Network and Systems,Kyoto,Japan, july 24-28,2006

[6] A. Bunse-Gerstner, D. Kubalinska, G. Vossen, D. Wilczek, " h2-norm optimal model reduction for large scale discrete dynamical MIMO systems", Journal of Computational and Applied Mathematics 233 (2010) 1202_1216.

[7] S. Panda, J.S. Yadav, N.P. Padidar, and C. Ardil," Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems", World Academy of Science, Engineering and Technology International Journal of Electrical and Computer Engineering Vol:6, No:9, 2012

[8] H. Du, J. Lam and B. Huang, “Constrained H2 Approximation of Multiple Input–Output Delay Systems Using Genetic Algorithm”, ISA Transaction, vol.46, no. 2, pp. 211-221, March 2007.

[9] A. Haddad, R.Bouyekhf, A. El Moudni, M.Wack, "Non-linear dynamic modeling of proton exchange membrane fuel cell", Journal of Power Sources 163 (2006) 420–432.

[10] SachinPuranik, M.S.  ''Control of fuel cell based green energy systems for  distributed generation application'', dissertation presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University 2009.

[11] Caisheng Wang, Nehrir, M.H., Shaw S.R., “Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits”, IEEE Transactions on Energy Conversion, Vol. 20, Issue 2, pp. 442-451, June 2005.

[12] M. A. Ayob, W.N.W. Zakaria, “Estimation of Nonlinear ARX Model for Soft Tissue by Wavenet and Sigmoid Estimators  “,ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 7, January 2016.

[13] L.Ljung, "Sytem Identification Toolbox", User's Guide R2015 a . www.mathworks.com

[14] Dan Simon, Biogeography-Based Optimization, IEEE Transactions on Evolutionary Computation (Volume: 12, Issue: 6, Dec. 2008 ), Page(s):702–713, DOI:10.1109/TEVC.2008.919004.

[15] Chennana, A., Megherbi, A. C., Bessous, N., Sbaa, S., Teta, A., Belabbaci, E. O., ... & Agajie, T. F. (2025). Vibration signal analysis for rolling bearings faults diagnosis based on deep-shallow features fusion. Scientific Reports15(1), 9270.

[16] Bentegri, H., Rabehi, M., Kherfane, S., Nahool, T. A., Rabehi, A., Guermoui, M., ... & El-Kenawy, E. S. M. (2025). Assessment of compressive strength of eco-concrete reinforced using machine learning tools. Scientific Reports15(1), 5017.

[17] Mehallou, A., M’hamdi, B., Amari, A., Teguar, M., Rabehi, A., Guermoui, M., ... & Khafaga, D. S. (2025). Optimal multiobjective design of an autonomous hybrid renewable energy system in the Adrar Region, Algeria. Scientific Reports15(1), 4173.

[18] Tibermacine, A., Akrour, D., Khamar, R., Tibermacine, I. E., & Rabehi, A. (2024, December). Comparative Analysis of SVM and CNN Classifiers for EEG Signal Classification in Response to Different Auditory Stimuli. In 2024 International Conference on Telecommunications and Intelligent Systems (ICTIS) (pp. 1-8). IEEE.

[19] Mostefaoui, M., Belfedhal, A. E., Larbi, A. A., Rabehi, A., Abderrezzaq, Z., & Dabou, R. (2024, December). Enhanced Detection of EVA Discoloration Defects in Solar Cells Using Vision Transformers and Contrastive Learning. In 2024 International Conference on Telecommunications and Intelligent Systems (ICTIS) (pp. 1-6). IEEE.

[20] Tibermacine, A., Tibermacine, I. E., Zouai, M., & Rabehi, A. (2024, December). EEG Classification Using Contrastive Learning and Riemannian Tangent Space Representations. In 2024 International Conference on Telecommunications and Intelligent Systems (ICTIS) (pp. 1-7). IEEE.

[21] R. Salim, M. Bettayeb , "H2 and Hinf optimal model reduction using genetic algorithms", Electrical and Computer Engineering Department, University of Sharjah, P.O. Box 27272, Sharjah, UAE.