In this paper, we investigated the structural, electronic, and thermal stability of the LiRuPO4 compound. We applied the ab-into-density functional to conduct all our calculations. We used gradient generalized approximation with Hubbard correction implemented in the CASTEP (Cambridge Serial Total Energy Package) code. Results indicate that LRP crystallizes in the orthorhombic structure after phonons and thermal stability analysis. LRP is a semiconductor with an indirect gap after analysis of band structure curves within electronic properties and an energy gap of 2,18 eV. LiRuPO4 will be an effective alternative to LiFePO4 in storage energy applications such as electric batteries in vehicle fabrication technology.
Keywords: LiRuPO4, density functional
calculations, semiconductor, storage energy applications.
[1] Al-Samet,
M. A. M. M. & Burgaz, E., Improving the lithium-ion diffusion and
electrical conductivity of LiFePO4 cathode material by doping
magnesium and multi-walled carbon nanotubes. Journal of Alloys and Compounds. 947
(2023) 169680.
[2] Erabhoina,
H. & Thelakkat, M. Tuning of composition and morphology of LiFePO4
cathode for applications in all solid-state lithium metal batteries. Scientific
reports. 12 (2022) 5454.
[3] Suarso,
E., Setyawan, F. A., Subhan, A., Ramli, M. M., Ismail, N. S., Zainuri, M., ...
& Darminto. Enhancement of LiFePO4 (LFP) electrochemical
performance through the insertion of coconut shell-derived rGO-like carbon as
cathode of Li-ion battery. Journal of Materials Science: Materials in
Electronics, 32 (2021) 28297-28306.
[4] Zhao, Q.
F., Zhang, S. Q., Hu, M. Y., Wang, C., & Jiang, G. H. Recent advances in
LiFePO4 cathode materials for lithium-ion batteries.
first-principles research. International Journal of Electrochemical Science, 16
(2021) 211226.
[5] Zhang,
B., He, Y., Gao, H., Wang, X., Liu, J., Xu, H., ... & He, X.. Unraveling
the doping mechanisms in lithium iron phosphate. Energy Materials, 2(2022).
[6] CLARK,
S.J.; SEGALL, M.D.; PICKARD, C.J.; HASNIP, P.J.; PROBERT, M.J.; REFSON, M.I.J.;
PAYNE, M.C. First principles methods using CASTEP.Z. Krist.,v. 220 (2005) 567.
[7] PERDEW,
J.P.; BURKE, K.; ERNZERHOF, M. Generalized Gradient Approximation Made
Simple.Phys. Rev. Lett.,v. 77 (1996) 3865.
[8] Shih, B.C., Yates, J.R. Gauge-including projector augmented-wave NMR chemical shift calculations with DFT+ U. Phys. Rev. B. 96 (2017) 1-10.