مجلة الجامعة الإسلامية للعلوم التطبيقية

Analysis of Magnetic Properties and Critical Current Density of Tl-2234 High-Temperature Superconductor Using AC Magnetic Susceptibility Measurements

Belqees Hassan

التخصص العام: Science

التخصص الدقيق: Materials science

https://doi.org/10.63070/jesc.2025.003
DownloadPDF
الملخص

This study investigates the magnetic properties and critical current density of Tl?Ba?Ca?Cu?O????       (Tl-2234) high-temperature superconductors through AC magnetic susceptibility measurements. Samples were synthesized using a one-step solid-state process with careful heat treatment protocols to minimize thallium evaporation. AC susceptibility measurements were conducted across temperatures ranging from 140 to 50K under various applied AC magnetic fields (0.5-8 mT). The analysis revealed a sharp transition primarily reflecting intragranular superconductivity, with the field dependence of the imaginary (?'') component providing insights into flux dynamics within the grains. The imaginary component peaks shifted towards lower temperatures with increasing magnetic field strength, indicating enhanced magnetic field penetration and increased intra-grain pinning centers. Using Bean's critical-state model, with an estimated effective particle radius of R ? 44.5 µm based on sieve size, the critical current density (Jc) was calculated from the peak positions in ?''(T) curves. The temperature dependence of Jc followed an empirical scaling relation, yielding a zero-temperature critical current density Jc(0) of 3.6×10? A/cm² and a critical exponent of 1.26 ± 0.08, quantifying key superconducting parameters of the prepared material.

 

Keywords: AC magnetic susceptibility; Current density; Flux pinning; Magnetic properties. 

مراجع

[1]

M. J. Qin and S. X. Dou, Superconductors high Tc, in Encyclopedia of Condensed Matter Physics, vol. 2, 2024, pp. 565–579. https://doi.org/10.1016/B978-0-323-90800-9.00254-7

[2]

A. Molodyk and D. C. Larbalestier, The prospects of high-temperature superconductors, Science, vol. 380, no. 6651, pp. 1220–1222, 2023, doi: 10.1126/science.abq4137. 

[3]

H. Wu, Recent development in high temperature superconductor: Principle, materials, and applications, Applied and Computational Engineering, vol. 63, pp. 153–171, 2024, https://doi.org/10.54254/2755-2721/63/20241015 

[4]

R. Shipra, J. C. Idrobo, and A. S. Sefat, "Structural and superconducting features of Tl-1223 prepared at ambient pressure," Supercond. Sci. Technol., vol. 28, no. 11, p. 115006, 2015, doi: 10.1088/0953-2048/28/11/115006   

[5]

Effects of Tl content and magnetic field on phase formation of TlmBa2Can-1CunO2n+2+? (m=1 and 2, n=4) superconductors,  Physica C: Superconductivity and its Applications. Physica C: Superconductivity and its Applications, vol. 586, p. 1353874, 2021, doi.org/10.1016/j.physc.2021.1353874.

[6]

B. Hassan, A. Alnakhlani, and M. Abdulhafiz, Investigating the

effects of high magnetic fields on the phase stability of Tl2Ba2Ca2Cu3O10-? superconductor. J. Phys. Sci., vol. 35, no. 2, pp. 33–45, 2024, doi: 10.21315/jps2024.35.2.3.

[7]

X. Chen and C. Gong, Dependence of the superconducting transition temperature on the type and number of CuO? layers in Tl?Ba?Ca???Cu?O??????. Phys. Rev. B, vol. 59, no. 6, pp. 4513–4523, 1999, doi: 10.1103/PhysRevB.59.4513.

[8]

A. A. Khurram and N. A. Khan, A search for a low anisotropic superconductor, J. Electromagnetic Analysis & Applications, vol. 2, pp. 63–74, 2010, doi: 10.4236/jemaa.2010.22010.

[9]

K. Buchkov, A. Galluzzi, E. Nazarova, and M. Polichetti, Complex AC magnetic susceptibility as a tool for exploring nonlinear magnetic phenomena and pinning properties in superconductors, Materials, vol. 16, no. 14, p. 4896, 2023, doi: 10.3390/ma16144896.

[10]

G. Kov?cs, I. Kirschner, I. Hal?sz, R. Laiho, T. Porjesz, K. Tompa, and G. Zsolt, Structure and superconductivity of variously prepared Tl-Ca-Ba-Cu-O compounds, Journal of the Less Common Metals, vol. 150, pp. 229–240, 1989, doi: 10.1016/0022-5088(89)90275-0.

[11]

K.-H. Müller, AC susceptibility of high temperature superconductors in a critical state model, Physica C: Superconductivity, vol. 159, no. 6, pp. 717–726, 1989, doi: 10.1016/0921-4534(89)90143-3.

[12]

L. E. Wenger, W. Win, C. J. McEwan, J. T. Chen, E. M. Logothetis, and R. E. Soltis, The complex AC susceptibility - critical current relationship in oxide superconductors, in High-Tc Superconductors, H. W. Weber, Ed. Boston, MA: Springer, 1988, ch. 40. doi: 10.1007/978-1-4899-0846-9_40.

[13]

A. V. Silhanek, S. Raedts, M. Lange, and V. V. Moshchalkov, AC-susceptibility of superconducting films with a periodic pinning array, Physica C: Superconductivity, vol. 408–410, pp. 516–517, 2004, doi: 10.1016/j.physc.2004.03.073.

[14]

E. Nazarova, A. Zaleski, and K. Buchkov, Doping dependence of irreversibility line in Y1?xCaxBa2Cu3O7??. Physica C: Superconductivity, vol. 470, no. 9–10, pp. 421–427, 2010, doi: 10.1016/j.physc.2010.03.002.

[15]

M. R. Presland, J. L. Tallon, P. W. Gilberd, and R. S. Liu, "Bulk single-superconducting-phase thallium “2234” superconductor - Tl2?xBa2Ca3+xCu4O12??, Physica C: Superconductivity, vol. 191, no. 3–4, pp. 307–315, 1992, doi: 10.1016/0921-4534(92)90923-Z.

[16]

T. Kaneko, K. Hamada, S. Adachi, H. Yamauchi, and S. Tanaka, Synthesis of Tl?based ‘‘2234’’ superconductors, J. Appl. Phys., vol. 71, no. 5, pp. 2347–2350, 1992, doi: 10.1063/1.351087.

[17]

R. B. Goldfarb, M. Lelental, and C. A. Thompson, "Alternating-Field Susceptometry and Magnetic Susceptibility of Superconductors, in Magnetic Susceptibility of Superconductors and Other Spin Systems, R. A. Hein, T. L. Francavilla, and D. H. Liebenberg, Eds. New York, NY: Plenum Press, 1991, pp. 49–80. doi: 10.1007/978-1-4899-2379-0_3.

[18]

C. P. Bean, "Magnetization of high-field superconductors, Rev. Mod. Phys., vol. 36, no. 1, pp. 31–39, 1964, doi: 10.1103/RevModPhys.36.31.

[19]

F. G?m?ry, Characterization of high-temperature superconductors by AC susceptibility measurements, Supercond. Sci. Technol., vol. 10, no. 8, pp. 523–542, 1997, doi: 10.1088/0953-2048/10/8/001.

[20]

J. R. Clem, Granular and superconducting-glass properties of the high-temperature superconductors, Physica C: Superconductivity, vol. 153–155, pp. 50–55, 1988, doi: 10.1016/0921-4534(88)90491-1.

[21]

C. Lin, Bean's critical-state model as a consequence of the circuit model of non-linear resistance, J. Appl. Phys., vol. 125, no. 3, p. 033901, 2019, doi: 10.1063/1.5084152.

[22]

C. Yang et al., Improvement of critical current density Jc in powder-in-tube rapid heating, quenching and transformation Nb3Al wires by doping with nano-SnO2Supercond. Sci. Technol., vol. 36, no. 6, p. 065001, 2023, doi: 10.1088/1361-6668/acc6f9.

[23]

J. Zhong, S. Zou, L. Lai, P. Chen, and S. Deng, Fast evaluation of the critical current of high-temperature superconducting coils based on the integral method, J. Appl. Phys., vol. 132, no. 16, p. 163903, 2022, doi: 10.1063/5.0112003.

[24]

C. P. Bean, Magnetization of high-field superconductors, Rev. Mod. Phys., vol. 36, no. 1, pp. 31–39, 1964, doi: 10.1103/RevModPhys.36.31.

[25]

M. W. Lee, M. F. Tai, S. C. Luo, and J. B. Shi, "Critical current densities in K3C60/Rb3C60 powders determined from AC/DC susceptibility measurements, Physica C: Superconductivity, vol. 245, pp. 6–11, 1995, doi: 10.1016/0921-4534(95)00100-X.

[26]

M. Jergel, A. Conde Gallardo, C. Falcony Guajardo, and V. Strbik, Tl-based superconductors for high-current, high-field applications," Supercond. Sci. Technol., vol. 9, no. 6, pp. 427–446, 1996, doi: 10.1088/0953-2048/9/6/001.

[27]

R. Awad, S. G. Elsharkawy, I. H. Ibrahim, and B. H. Chazbeck, Superconducting properties of (Tl1.6Pb0.4)-2223 substituted by praseodymium, Asian Journal of Applied Sciences, vol. 2, pp. 63–73, 2009, doi: 10.3923/ajaps.2009.63.73.

[28]

A. N. Lykov, Magnetic flux creep in HTSC and Anderson-Kim theory, Low Temp. Phys., vol. 40, no. 9, pp. 773–795, 2014, doi: 10.1063/1.4896968.

[29]

M. P. Maley, J. O. Willis, H. Lessure, and M. E. McHenry, Dependence of flux-creep activation energy upon current density in grain-aligned YBa2Cu3O7?x, Phys. Rev. B, vol. 42, no. 4, pp. 2639–2642, 1990, doi: 10.1103/PhysRevB.42.2639.

[30]

J. R. Thompson et al., Enhanced current density Jc and extended irreversibility in single-crystal Bi2Sr2Ca1Cu2O8linear defects from heavy ion irradiation, Appl. Phys. Lett., vol. 60, no. 19, pp. 2306–2308, 1992, doi: 10.1063/1.107012.

[31]

S. S. P. Parkin et al., Model family of high-temperature superconductors: TlmCan? 1Ba2CunO2(n+ 1)+ m (m= 1, 2; n= 1, 2, 3). Phys. Rev. B, vol. 38, no. 10, pp. 6531–6535, 1988, doi: 10.1103/PhysRevB.38.6531.