This study
investigates the magnetic properties and critical current density of
Tl?Ba?Ca?Cu?O???? (Tl-2234)
high-temperature superconductors through AC magnetic susceptibility
measurements. Samples were synthesized using a one-step solid-state process
with careful heat treatment protocols to minimize thallium evaporation. AC
susceptibility measurements were conducted across temperatures ranging from 140
to 50K under various applied AC magnetic fields (0.5-8 mT). The analysis
revealed a sharp transition primarily reflecting intragranular
superconductivity, with the field dependence of the imaginary (?'') component
providing insights into flux dynamics within the grains. The imaginary
component peaks shifted towards lower temperatures with increasing magnetic
field strength, indicating enhanced magnetic field penetration and increased
intra-grain pinning centers. Using Bean's critical-state model, with an
estimated effective particle radius of R ? 44.5 µm based on sieve size, the
critical current density (Jc) was calculated from the peak positions
in ?''(T) curves. The temperature dependence of Jc followed an
empirical scaling relation, yielding a zero-temperature critical current
density Jc(0) of 3.6×10? A/cm² and a critical exponent of 1.26 ±
0.08, quantifying key superconducting parameters of the prepared material.
Keywords: AC magnetic susceptibility; Current density; Flux pinning;
Magnetic properties.
[1] |
M. J. Qin and
S. X. Dou, Superconductors high Tc, in Encyclopedia of
Condensed Matter Physics, vol. 2, 2024, pp. 565–579. https://doi.org/10.1016/B978-0-323-90800-9.00254-7 |
[2] |
A. Molodyk and D. C. Larbalestier,
The prospects of high-temperature superconductors, Science, vol.
380, no. 6651, pp. 1220–1222, 2023, doi:
10.1126/science.abq4137. |
[3] |
H. Wu, Recent development in high
temperature superconductor: Principle, materials, and applications, Applied
and Computational Engineering, vol. 63, pp. 153–171, 2024,
https://doi.org/10.54254/2755-2721/63/20241015 |
[4] |
R. Shipra, J. C. Idrobo, and A. S.
Sefat, "Structural and superconducting features of Tl-1223 prepared at
ambient pressure," Supercond. Sci. Technol., vol. 28, no.
11, p. 115006, 2015, doi: 10.1088/0953-2048/28/11/115006 |
[5] |
Effects
of Tl content and magnetic field on phase formation of TlmBa2Can-1CunO2n+2+?
(m=1 and 2, n=4) superconductors,
Physica C: Superconductivity and its Applications. Physica C:
Superconductivity and its Applications, vol. 586, p. 1353874, 2021, doi.org/10.1016/j.physc.2021.1353874. |
[6] |
B. Hassan, A. Alnakhlani, and M.
Abdulhafiz, Investigating the effects
of high magnetic fields on the phase stability of Tl2Ba2Ca2Cu3O10-?
superconductor. J. Phys. Sci., vol. 35, no. 2,
pp. 33–45, 2024, doi: 10.21315/jps2024.35.2.3. |
[7] |
X. Chen and C. Gong, Dependence of the superconducting transition temperature on the
type and number of CuO? layers in Tl?Ba?Ca???Cu?O??????. Phys. Rev. B, vol. 59,
no. 6, pp. 4513–4523, 1999, doi: 10.1103/PhysRevB.59.4513. |
[8] |
A. A. Khurram and N. A. Khan, A
search for a low anisotropic superconductor, J. Electromagnetic
Analysis & Applications, vol. 2, pp. 63–74, 2010, doi:
10.4236/jemaa.2010.22010. |
[9] |
K. Buchkov, A. Galluzzi, E.
Nazarova, and M. Polichetti, Complex AC magnetic susceptibility as a tool for
exploring nonlinear magnetic phenomena and pinning properties in
superconductors, Materials, vol. 16, no. 14, p. 4896, 2023, doi:
10.3390/ma16144896. |
[10] |
G. Kov?cs, I. Kirschner, I.
Hal?sz, R. Laiho, T. Porjesz, K. Tompa, and G. Zsolt, Structure and
superconductivity of variously prepared Tl-Ca-Ba-Cu-O compounds, Journal
of the Less Common Metals, vol. 150, pp. 229–240, 1989, doi:
10.1016/0022-5088(89)90275-0. |
[11] |
K.-H. Müller, AC susceptibility of
high temperature superconductors in a critical state model, Physica
C: Superconductivity, vol. 159, no. 6, pp. 717–726, 1989, doi:
10.1016/0921-4534(89)90143-3. |
[12] |
L. E. Wenger, W. Win, C. J.
McEwan, J. T. Chen, E. M. Logothetis, and R. E. Soltis, The complex AC
susceptibility - critical current relationship in oxide superconductors,
in High-Tc Superconductors, H. W. Weber, Ed. Boston,
MA: Springer, 1988, ch. 40. doi: 10.1007/978-1-4899-0846-9_40. |
[13] |
A. V. Silhanek, S. Raedts, M.
Lange, and V. V. Moshchalkov, AC-susceptibility of superconducting films with
a periodic pinning array, Physica C: Superconductivity, vol. 408–410,
pp. 516–517, 2004, doi: 10.1016/j.physc.2004.03.073. |
[14] |
E. Nazarova, A. Zaleski, and K.
Buchkov, Doping dependence of irreversibility line in Y1?xCaxBa2Cu3O7??. Physica C:
Superconductivity, vol. 470, no. 9–10, pp. 421–427, 2010, doi:
10.1016/j.physc.2010.03.002. |
[15] |
M. R. Presland, J. L. Tallon, P.
W. Gilberd, and R. S. Liu, "Bulk single-superconducting-phase thallium
“2234” superconductor - Tl2?xBa2Ca3+xCu4O12??, Physica
C: Superconductivity, vol. 191, no. 3–4, pp. 307–315, 1992, doi:
10.1016/0921-4534(92)90923-Z. |
[16] |
T. Kaneko, K. Hamada, S. Adachi,
H. Yamauchi, and S. Tanaka, Synthesis of Tl?based ‘‘2234’’
superconductors, J. Appl. Phys., vol. 71, no. 5, pp. 2347–2350,
1992, doi: 10.1063/1.351087. |
[17] |
R. B. Goldfarb, M. Lelental, and
C. A. Thompson, "Alternating-Field Susceptometry and Magnetic
Susceptibility of Superconductors, in Magnetic Susceptibility of
Superconductors and Other Spin Systems, R. A. Hein, T. L. Francavilla,
and D. H. Liebenberg, Eds. New York, NY: Plenum Press, 1991, pp. 49–80. doi:
10.1007/978-1-4899-2379-0_3. |
[18] |
C. P. Bean, "Magnetization of
high-field superconductors, Rev. Mod. Phys., vol. 36, no. 1, pp.
31–39, 1964, doi: 10.1103/RevModPhys.36.31. |
[19] |
F. G?m?ry, Characterization of
high-temperature superconductors by AC susceptibility measurements, Supercond.
Sci. Technol., vol. 10, no. 8, pp. 523–542, 1997, doi:
10.1088/0953-2048/10/8/001. |
[20] |
J. R. Clem, Granular and
superconducting-glass properties of the high-temperature
superconductors, Physica C: Superconductivity, vol. 153–155, pp.
50–55, 1988, doi: 10.1016/0921-4534(88)90491-1. |
[21] |
C. Lin, Bean's critical-state
model as a consequence of the circuit model of non-linear resistance, J.
Appl. Phys., vol. 125, no. 3, p. 033901, 2019, doi: 10.1063/1.5084152. |
[22] |
C. Yang et al.,
Improvement of critical current density Jc in powder-in-tube rapid heating,
quenching and transformation Nb3Al wires by
doping with nano-SnO2, Supercond.
Sci. Technol., vol. 36, no. 6, p. 065001, 2023, doi:
10.1088/1361-6668/acc6f9. |
[23] |
J. Zhong, S. Zou, L. Lai, P. Chen,
and S. Deng, Fast evaluation of the critical current of high-temperature
superconducting coils based on the integral method, J. Appl. Phys.,
vol. 132, no. 16, p. 163903, 2022, doi: 10.1063/5.0112003. |
[24] |
C. P. Bean, Magnetization of
high-field superconductors, Rev. Mod. Phys., vol. 36, no. 1, pp.
31–39, 1964, doi: 10.1103/RevModPhys.36.31. |
[25] |
M. W. Lee, M. F. Tai, S. C. Luo,
and J. B. Shi, "Critical current densities in K3C60/Rb3C60 powders
determined from AC/DC susceptibility measurements, Physica C:
Superconductivity, vol. 245, pp. 6–11, 1995, doi:
10.1016/0921-4534(95)00100-X. |
[26] |
M. Jergel, A. Conde Gallardo, C.
Falcony Guajardo, and V. Strbik, Tl-based superconductors for high-current,
high-field applications," Supercond. Sci. Technol., vol. 9,
no. 6, pp. 427–446, 1996, doi: 10.1088/0953-2048/9/6/001. |
[27] |
R. Awad, S. G. Elsharkawy, I. H.
Ibrahim, and B. H. Chazbeck, Superconducting properties of (Tl1.6Pb0.4)-2223 substituted by praseodymium, Asian
Journal of Applied Sciences, vol. 2, pp. 63–73, 2009, doi:
10.3923/ajaps.2009.63.73. |
[28] |
A. N. Lykov, Magnetic flux creep
in HTSC and Anderson-Kim theory, Low Temp. Phys., vol. 40, no. 9,
pp. 773–795, 2014, doi: 10.1063/1.4896968. |
[29] |
M. P. Maley, J. O. Willis, H.
Lessure, and M. E. McHenry, Dependence of flux-creep activation energy upon
current density in grain-aligned YBa2Cu3O7?x, Phys.
Rev. B, vol. 42, no. 4, pp. 2639–2642, 1990, doi:
10.1103/PhysRevB.42.2639. |
[30] |
J. R. Thompson et al.,
Enhanced current density Jc and extended irreversibility in single-crystal Bi2Sr2Ca1Cu2O8linear
defects from heavy ion irradiation, Appl. Phys. Lett., vol. 60,
no. 19, pp. 2306–2308, 1992, doi: 10.1063/1.107012. |
[31] |
S. S. P. Parkin et al.,
Model family of high-temperature superconductors: TlmCan? 1Ba2CunO2(n+
1)+ m (m= 1, 2; n= 1, 2, 3). Phys. Rev. B, vol. 38,
no. 10, pp. 6531–6535, 1988, doi: 10.1103/PhysRevB.38.6531. |