Tetra(4-aminophenyl)
porphyrin-based Covalent Organic Frameworks
Covalent Organic Frameworks (COFs) are robust crystalline
porous materials with unique properties and have promising applications in many
fields such as gas adsorption, sensing and catalysis. COFs properties can be
tailored by the judicious choice of their building units. Stemming from its
unique properties, rigid structure and synthetic accessibility, tetra(4-aminophenyl)porphyrin
(TAPP) has been employed as a building unit to construct various COF materials.
This review highlights the different synthetic approaches that were exploited
by researchers to assemble COF materials based on TAPP.
[1] R. Liu, K. T. Tan,Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z.
Lu, H. Yanga and D. Jiang. Covalent organic frameworks: an ideal platform for
designing ordered materials and advanced applications. Chem. Soc. Rev., 50
(2021) 120-242.
[2] D. Jiang. Covalent Organic Frameworks: An Amazing Chemistry
Platform for Designing Polymers. Chem., 6 (2020) 2461-2483.
[3] K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao,
Y. Gong, Q. Jiang, and D. Jiang. Covalent Organic Frameworks: Design,
Synthesis, and Functions. Chem. Rev., 120 (2020) 8814–8933.
] 4] H. Wang, H. Wang, Z. Wang, L. Tang, G.
Zeng, P. Xu, M. Chen, T. Xiong, C. Zhou and X. Li. Covalent organic framework
photocatalysts: structures and applications, Chem. Soc. Rev., 49 (2020)
4135-4165.
[5] J. Wang and S. Zhuang, Covalent organic frameworks
(COFs) for environmental applications, Coord. Chem. Rev., 400 (2019) 213046.
[6] Z. Wang, S. Zhang, Y. Chen, Z. Zhang and S. Ma,
Covalent organic frameworks for separation applications, Chem. Soc. Rev., 49
(2020) 708-735.
[7] Y. Yusran,
H. Li, X. Guan, Q. Fang and S. Qiu, Covalent organic frameworks for catalysis,
EnergyChem, 2 (2020) 100035.
[8] X. Zhao, P. Pachfule and A. Thomas, Covalent organic
frameworks (COFs) for electrochemical applications, Chem. Soc. Rev., 50 (2021)
6871-6913 .
[9] S.-Y. Ding and W. Wang, Covalent organic frameworks
(COFs): from design to applications, Chem. Soc. Rev., 42 (2013) 548-568.
[10] X. Feng, X. Ding, D. Jiang, Covalent organic
frameworks, Chem. Soc. Rev., 41 (2012) 6010-6022.
[11] K. Geng, T.
He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang and D. Jiang, Covalent organic frameworks: design,
synthesis, and functions, Chem. Rev., 120 (2020) 8814-8933.
[12] X. Guan, F. Chen, Q.
Fang and S. Qiu, Design and applications of three dimensional covalent organic
frameworks, Chem. Soc. Rev., 49 (2020) 1357-1384.
[13] Y. Li, W.
Chen, G. Xing, D. Jiang and L. Chen, New synthetic strategies toward covalent
organic frameworks, Chem. Soc. Rev., 49 (2020) 2852-2868.
[14] M.S. Lohse and T. Bein, Covalent
organic frameworks: structures, synthesis, and applications, Adv. Funct. Mater.,
28 (2018) 1705553.
[15] H. Furukawakyle, C.
O’keeffeand and O. M. Yaghi. The Chemistry and Applications of Metal-Organic
Frameworks. Science, 341 (2013) 6149.
[16] Q.-Y. Liu, J.-F. Li and J.-W. Wang. Research of covalent
organic frame materials based on porphyrin units. J Incl Phenom Macrocycl Chem.,
95 (2019) 1–15.
[17] X. Wu, X. Zhang, Y. Li, B. Wang, Y. Li and L. Chen. A
porphyrin-based covalent organic framework with pH-dependent fluorescence. J.
Mater. Sci., 56 (2021) 2717–2724.
[18] H. Shan, D. Cai, X. Zhang, Q. Zhu, P. Qin and J. Baeyens.
Donor-acceptor type two-dimensional porphyrin-based covalent organic framework
for visible-light-driven heterogeneous photocatalysis. Chem. Eng. J., 432
(2022) 134288.
[19] J. Chen, Y. Zhu and S. Kaskel. Porphyrin-Based Metal–Organic
Frameworks for Biomedical Applications. Angew. Chem. Int. Ed., 60 (2021)
5010-5035.
[20] C. Zhao, L. Zhang, Q. Wang, L. Zhang, P. Zhu, J. Yu, and Y.
Zhang. Porphyrin-Based Covalent Organic Framework Thin Films as Cathodic
Materials for “On–Off–On” Photoelectrochemical Sensing of Lead Ions. ACS Appl.
Mater. Interfaces., 13 (2021) 20397–20404
[21] H. Huang, F. Li, Y. Zhang
and Y. Chen. Two-dimensional
graphdiyne analogue Co-coordinated porphyrin covalent organic framework
nanosheets as a stable electrocatalyst for the oxygen evolution reaction. J.
Mater. Chem. A., 7 (2019) 5575-5582
[22] A.P. Côté, I. A. Benin, N. W. Ockwig, M. O’Keeffe, A. J.
Matzger and O. M. Yaghi. Porous, crystalline, covalent organic frameworks.
Science, 310 (2005) 1166–1170.
[23] S. Wan, F. G?ndara, A. Asano, H. Furukawa, A. Saeki, S.K. Dey,
L. Liao, W.W. Ambrogio, Y.Y. Botros, X. Duan, S. Seki, J.F. Stoddart and O.M.
Yaghi. Covalent organic frameworks with high charge carrier mobility, Chem.
Mater., 23 (2011) 4094–4097.
[24] S. Kandambeth, D.B. Shinde, M.K. Panda, B. Lukose, T. Heine
and R. Banerjee. Enhancement of chemical stability and crystallinity in
porphyrin containing covalent organic frameworks by intramolecular hydrogen
bonds. Angew. Chem. Int. Ed., 52 (2013) 13052–13056.
[25] B. Gole, V. Stepanenko, S. Rager, M. Grüne, D.D. Medina, T.
Bein, F. Würthner and F. Beuerle. Microtubular self-assembly of covalent
organic frameworks. Angew. Chem. Int. Ed., 57 (2018) 846–850.
[26] X. Xu, S. Wang, Y. Yue, and N. Huang. Semiconductive
Porphyrin-Based Covalent Organic Frameworks for Sensitive Near-Infrared
Detection. ACS Appl. Mater. Interfaces, 12 (2020) 37427?37434.
[27] Y. Li , J. Zhang, K. Zuo, Z. Li, Y. Wang, H. Hu, C. Zeng, H.
Xu, B. Wang and Y. Gao. Covalent Organic Frameworks for Simultaneous CO2
Capture and Selective Catalytic Transformation. Catalysts, 11 (2021) 1133.
[28] X. Wu1, X. Zhang, Y. Li, B. Wang, Y. Li and L. Chen. A
porphyrin-based covalent organic framework with pH-dependent fluorescence. J.
Mater. Sci., 56 (2021) 2717–2724.
[29] R. Shen, W. Zhu, X. Yan, Ta. Li, Yo. Liu, Y. Li, S. Daia and Z.-G. Gu. A porphyrin porous
organic polymer with bicatalytic sites for highly efficient one-pot tandem
catalysis. Chem. Commun., 55 (2019) 822-825.
[30] V. S. P. K. Neti, J. Wang, S. Deng, and L. Echegoyen.
Synthesis of a Polyimide Porous Porphyrin Polymer for Selective CO2
Capture. J. Chem., (2015) Article ID 281616: http://dx.doi.org/10.1155/2015/281616.
[31] C. Zhang, S. Zhang, Y. Yan, F. Xia, A. Huang, and Y. Xian.
Highly Fluorescent Polyimide Covalent Organic Nanosheets as Sensing Probes for
the Detection of 2,4,6-Trinitrophenol. ACS Appl. Mater. Interfaces, 19 (2017)
13415?13421.
[32] M. Fathalla. Synthesis, CO2 Adsorption and
Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous
Polymers. Macromol. Res., 29 (2021) 321–326.
[33] A. Nagai, X. Chen, X. Feng, X. Ding, Z. Guo, and D. Jiang. A
Squaraine-Linked Mesoporous Covalent Organic Framework. Angew. Chem., 125
(2013) 3858 –3862.