Tetra(4-aminophenyl) porphyrin-based Covalent Organic Frameworks
Covalent
Organic Frameworks (COFs) are robust crystalline porous materials with unique
properties and have promising applications in many fields such as gas
adsorption, sensing and catalysis. COFs properties can be tailored by the
judicious choice of their building units. Stemming from its unique properties,
rigid structure and synthetic accessibility, tetra(4-aminophenyl)porphyrin
(TAPP) has been employed as a building unit to construct various COF materials.
This review highlights the different synthetic approaches that were exploited
by researchers to assemble COF materials based on TAPP.
[1] R. Liu, K. T. Tan,Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H.
Yanga and D. Jiang. Covalent organic frameworks: an ideal platform for
designing ordered materials and advanced applications. Chem. Soc. Rev. 50
(2021) 120-242.
[2] D. Jiang. Covalent Organic Frameworks: An Amazing Chemistry Platform
for Designing Polymers. Chem. 6 (2020) 2461-2483.
[3] K. Geng, T. He, R. Liu, S. Dalapati, K. T. Tan, Z. Li, S. Tao, Y.
Gong, Q. Jiang, and D. Jiang. Covalent Organic Frameworks: Design, Synthesis,
and Functions. Chem. Rev. 120 (2020) 8814–8933.
[4] H. Furukawakyle, C. O’keeffeand and O. M. Yaghi. The Chemistry and
Applications of Metal-Organic Frameworks. Science 341 (2013) 6149.
[5] Q.-Y. Liu, J.-F. Li and J.-W. Wang. Research of covalent organic
frame materials based on porphyrin units. J Incl Phenom Macrocycl Chem. 95
(2019) 1–15.
[6] A.P. Côté, I. A. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger and
O. M. Yaghi. Porous, crystalline, covalent organic frameworks. Science 310
(2005) 1166–1170.
[7] S. Wan, F. G?ndara, A. Asano, H. Furukawa, A. Saeki, S.K. Dey, L.
Liao, W.W. Ambrogio, Y.Y. Botros, X. Duan, S. Seki, J.F. Stoddart and O.M.
Yaghi. Covalent organic frameworks with high charge carrier mobility, Chem.
Mater. 23 (2011) 4094–4097.
[8] S. Kandambeth, D.B. Shinde, M.K. Panda, B. Lukose, T. Heine and R.
Banerjee. Enhancement of chemical stability and crystallinity in porphyrin
containing covalent organic frameworks by intramolecular hydrogen bonds. Angew.
Chem. Int. Ed. 52 (2013) 13052–13056.
[9] B. Gole, V. Stepanenko, S. Rager, M. Grüne, D.D. Medina, T. Bein, F.
Würthner and F. Beuerle. Microtubular self-assembly of covalent organic
frameworks. Angew. Chem. Int. Ed. 57 (2018) 846–850.
[10] X. Xu, S. Wang, Y. Yue, and N. Huang. Semiconductive Porphyrin-Based
Covalent Organic Frameworks for Sensitive Near-Infrared Detection. ACS Appl.
Mater. Interfaces 12 (2020) 37427?37434.
[11] Y. Li , J. Zhang, K. Zuo, Z. Li, Y. Wang, H. Hu, C. Zeng, H. Xu, B.
Wang and Y. Gao. Covalent Organic Frameworks for Simultaneous CO2 Capture and Selective Catalytic Transformation. Catalysts 11 (2021)
1133.
[12] X. Wu1, X. Zhang, Y. Li, B. Wang, Y. Li and L. Chen. A
porphyrin-based covalent organic framework with pH-dependent fluorescence. J.
Mater. Sci. 56 (2021) 2717–2724.
[13] R. Shen, W. Zhu, X. Yan, Ta. Li, Yo. Liu, Y. Li, S. Daia and
Z.-G. Gu. A porphyrin porous organic polymer with bicatalytic sites for highly
efficient one-pot tandem catalysis. Chem. Commun. 55 (2019) 822-825.
[14] V. S. P. K. Neti, J. Wang, S. Deng, and L. Echegoyen. Synthesis of a
Polyimide Porous Porphyrin Polymer for Selective CO2 Capture. J. Chem. (2015)
Article ID 281616: http://dx.doi.org/10.1155/2015/281616.
[15] C. Zhang, S. Zhang, Y. Yan, F. Xia, A. Huang, and Y. Xian. Highly
Fluorescent Polyimide Covalent Organic Nanosheets as Sensing Probes for the
Detection of 2,4,6-Trinitrophenol. ACS Appl. Mater. Interfaces 19 (2017)
13415?13421.
[16] M. Fathalla. Synthesis, CO2 Adsorption and
Catalytic Properties of Porphyrin-Pyromellitic Dianhydride Based Porous
Polymers. Macromol. Res. 29 (2021) 321–326.
[17] A. Nagai, X. Chen, X.
Feng, X. Ding, Z. Guo, and D. Jiang. A Squaraine-Linked Mesoporous Covalent
Organic Framework. Angew. Chem. 125 (2013) 3858 –3862.