Investigation of Interfacial Magnetic Properties of Co/C60 Hybrid Interface
The present work demonstrates a detail investigation of interfacial magnetic properties
of cobalt (Co)/fullerene (C60) based ferromagnetic/organic (F/O) hybrid interface. The interfacial
structural properties of Co, C60 and hybrid interface have been analyzed by X-ray reflectivity
(XRR), both computationally and experimentally. The results shows that the grown films have
smooth surface (roughness < 0.5 nm) and intermixing at the interface between organic and
inorganic layers is less than 1 nm. The spin injection at the hybrid interface was studied by
recording the magnetic hysteresis loop at 100 K and photoemission of hybrid interface under the
applied bias and magnetic field. It has been observed that due to interfacial spin polarized
electron transfer at F/O interface, the photoemission of C60 reduces, coercivity of the cobalt
increases which give about 18% spin polarization of the carriers injected in C60. Finally, the
performance of C60 based tunnel junction have been studied in the device configuration viz.
Co/Al2O3/C60/Py. The magneto resistance (MR) of up to 10 % is obtained for device which
having C60 layer of thickness 10 nm.
[1] J. Burroughes, C. Jones, and R.H. Friend, New semiconductor device physics in polymer
diodes and transistors, Nature, 335 (1988) 137.
[2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H.
Friend, P. L. Burn, and A. B. Holmes. Light-emitting diodes based on conjugated polymers,
Nature, 347 (1990) 539.
[3] A. Zampetti A. Minotto F. Cacialli, Near?Infrared (NIR) Organic Light?Emitting Diodes
(OLEDs): Challenges and Opportunities, Adv. Funct. Sci., January (2019)
https://doi.org/10.1002/adfm.201807623
[4] M. Ahles, A. Hepp, R. Schmechel, and H. V. Seggern, Light emission from a polymer
transistor, Appl. Phys. Lett., 84 (2004)428.
[5] L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C.-W. Ou, P. K.-H. Ho, H. Sirringhaus,
and R. H. Friend, General observation of n-type field-effect behaviour in organic semiconductors,
Nature, 434 (2005)194.
[6] Y. Kim, S. Chung, K. Cho, D. Harkin, W.?Taek Hwang, D. Yoo Jae?Keun, Kim W. Lee
Y. Song, H. Ahn, Y. Hong, H. Sirringhaus, K. Kang, T. Lee, Enhanced Charge Injection
Properties of Organic Field?Effect Transistor by Molecular Implantation Doping, Adv. Mater., 31,
(2019) 1806697.
[7] 17.3% is organic solar cell efficiency record,
https://www.electronicsweekly.com/news/research-news/17-3-organic-solar-cell-efficiencyrecord-
2018-08/ .
[8] J. Hou, O. Ingan?s, R. H. Friend & F. Gao, Organic solar cells based on non-fullerene acceptors,
Nature Materials, 17 (2018) 119–128.
[9] C. Yan, S. Barlow, Z. Wang, H. Yan, A. K.-Y. Jen, S. R. Marder & X. Zhan, Non-fullerene
acceptors for organic solar cells, Nature Rev. Mat. 3, (2018) 18003.
[10] M. T. Khan, R. Bhargav, A. Kaur, S.K. Dhawan, S. Chand. Effect of cadmium sulphide
quantum dot processing and post thermal annealing on P3HT/PCBM photovoltaic device, Thin
Solid Films 519 (2010) 1007.
[11] M. T. Khan, A. Kaur, S K Dhawan and S. Chand, In-Situ growth of cadmium telluride
nanocrystals in poly(3-hexylthiophene) matrix for photovoltaic application, J. Appl. Phys 110
(2011) 044509.
[12] Haoliang Liu, Chuang Zhang, Hans Malissa, Matthew Groesbeck, Marzieh Kavand, Ryan
McLaughlin, Shirin Jamali, Jingjun Hao, Dali Sun, Royce A. Davidson, Leonard Wojcik, Joel S,
Organic-based magnon spintronics. Miller, Christoph Boehme & Z. Valy Vardeny, Nature
Materials, 17 (2018) 308–312.
[13] Haoliang Liu, Jingying Wang, Matthew Groesbeck, Xin Pan, Chuang Zhang and Z. Valy
Vardeny, Studies of spin related processes in fullerene C60 devices, J. Mater. Chem. C, 2018,6,
3621-3627.
[13] Srijani Mallik, Stefan Mattauch, Manas Kumar Dalai, Thomas Brückel & Subhankar Bedanta
Effect of magnetic fullerene on magnetization reversal created at the Fe/C60 interface, Scientific
Reports, 8 (2018) 5515.
[14] Lidan Guo Xianrong Gu Xiangwei Zhu Xiangnan, Sun Recent Advances in Molecular
Spintronics: Multifunctional Spintronic Devices, Adv. Mat. (2019), 1805355,
https://doi.org/10.1002/adma.201805355
[15] Shiheng Liang, Rugang Geng, Baishun Yang, Wenbo Zhao, Ram Chandra Subedi, Xiaoguang
Li, Xiufeng Han & Tho Duc Nguyen, Curvature-enhanced Spin-orbit Coupling and Spinterface
Effect in Fullerene-based Spin Valves, Scientific Reports, 6, (2016) 19461.
[16] Xianmin Zhang, Shigemi Mizukami, Takahide Kubota, Qinli Ma, Mikihiko Oogane, Hiroshi
Naganuma, Yasuo Ando & Terunobu Miyazaki, Observation of a large spin-dependent transport
length in organic spin valves at room temperature, Nat. Commun. 4 (2013) 1392.
[17] Z. G Yu, Spin-orbit coupling and its effects in organic solids, Phys. Rev. B 85 (2012) 115201.
[18] Roderick C. I. MacKenzie, Jarvist M. Frost, and Jenny Nelson, A numerical study of mobility
in thin films of fullerene derivatives, J. Chem. Phys. 132 (2010) 064904.
[19] Marco Gobbi Federico Golmar Roger Llopis Fèlix Casanova Luis E. Hueso, Room?
Temperature Spin Transport in C60?Based Spin Valves, Adv. Mater. 23 (2011) 1609.
[20] Mohd Taukeer Khan, V. Agrawal, Abdullah Almohammedi, V. Gupta, Effect of Traps on the
Charge Transport in Semiconducting Polymer PCDTBT, Solid State Electronics, 145 (2018) 49–53. 4)
[21] Mohd Taukeer Khan, and Abdullah Almohammedi, Effect of CdS nanocrystals on charge
transport mechanism in poly(3-hexylthiophene), J. App. Phy., 122 (2017) 075502.
[22] Mohd Taukeer Khan, Amarjeet Kaur, S K Dhawan and Suresh Chand, Hole transport
mechanism in organic/inorganic hybrid system based on in-situ grown CdTe nanocrystals in
poly(3-hexylthiophene), J. Appl. Phys. 109 (2011) 114509.
[23] Mohd Taukeer Khan, Manisha Bajpai, Amarjeet Kaur, S. K. Dhawan, Suresh Chand,
Electrical, optical and hole transport mechanism in thin films of poly(3-octylthiophene-co-3-
hexylthiophene): Synthesis and characterization, Synthetic Metals 160 (2010) 1530.
[24] Elements of Modern X-ray Physics, by J. Als-Nielsen and Des McMorrow, 2nd Edition wiley,(2001).
[25] Handbook of Thin Film Materials: Nanomaterials and Magnetic Thin Films by H. S. Nalwa,
Academic Press, (2002).
[26] Y.-L. Chan, Y.-J. Hung, C.-H. Wang, Y.-C. Lin, C.-Y. Chiu, Y.-L. Lai, H.-T. Chang, C.-H.
Lee, Y. J. Hsu, and D. H. Wei, Magnetic Response of an Ultrathin Cobalt Film in Contact with an
Organic Pentacene Layer, Physical Review Letters 104 (2010) 177204.
[27] A. A. Sidorenko, C. Pernechele, P. Lupo, M. Ghidini, M. Solzi, R. De Renzi, I.
Bergenti, P. Graziosi, V. Dediu, L. Hueso, and a. T. Hindmarch, Interface effects on an ultrathin
Co film in multilayers based on the organic semiconductor Alq3, App. Phy. Let. 97 (2010) 162509.
[28] I. Bergenti, a. Riminucci, E. Arisi, M. Murgia, M. Cavallini, M. Solzi, F. Casoli, and V.
Dediu, Magnetic properties of Cobalt thin films deposited on soft organic layers, Journal of
Magnetism and Magnetic Materials 316 (2007) e987.
[29] Y-J., L.Y.-L. Hsu, C-H. Chen, Y-H. Lin, H-Y. Chien, J-H.Wang, T-N. Lam, Y-L. Chan, D.
H. Wei, H-J. Lin and C-T. Chen, Self-Assembled Graphene/Carbon Nanotube Hybrid Films for
Supercapacitors, The J. Phy. Chem. Lett., 4 (2012) 310.
[30] J. S. Moodera and G. Mathon, Spin polarized tunneling in ferromagnetic junctions, J. Magn.
Magn. Mater., 200 (1999) 248–273.
[31] M. Julli?ere, Tunneling between ferromagnetic films, Phys. Lett. 54, (1975) 225.