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Abstract 

Massive multiple-input multiple-output (MIMO) systems are a cornerstone of 5G and emerging 

6G wireless networks due to their ability to provide high spectral efficiency and improved 

reliability. However, signal detection in large-scale MIMO systems remains a major challenge 

because of the high computational complexity associated with conventional linear detectors. In 

this paper, we investigate the Conjugate Gradient (CG) algorithm as a low-complexity iterative 

detection technique for massive MIMO systems. The MIMO detection problem is formulated as 

a system of linear equations and solved using the CG method implemented within the Sionna 

simulation framework. The convergence behavior and bit error rate (BER) performance of the 

proposed detector are analyzed under different signal-to-noise ratio (SNR) levels and spatial 

correlation scenarios. Simulation results show that the CG-based detector achieves near-optimal 

BER performance while significantly reducing computational complexity compared to classical 

linear detectors such as the linear minimum mean square error (LMMSE) detector. These results 

demonstrate that CG-based detection is a promising and efficient solution for practical large-

scale MIMO deployments. 
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1. Introduction 

The growth of data-intensive applications, IoT, and autonomous systems demands higher 

throughput and lower latency in wireless communications. Massive MIMO enhances spectral 

efficiency, robustness, and spatial multiplexing but makes signal detection challenging under 

interference and spatial correlation. Conventional detectors like ZF and LMMSE are reliable but 

computationally expensive. The Conjugate Gradient (CG) algorithm offers a low-complexity 

iterative alternative, approximating LMMSE performance efficiently. In this paper, we implement 

CG-based MIMO detection using Sionna and analyze its BER, convergence, and computational 

complexity under various SNR and channel conditions. 

 

2. Related Work 

Several linear detection techniques have been proposed for MIMO systems to address the 

challenges of high-dimensional signal detection. Among the most common are the Zero-Forcing 

(ZF) and Linear Minimum Mean Square Error (LMMSE) detectors. The ZF detector aims to 

completely eliminate interference by inverting the channel matrix. Although it provides 

interference-free estimation, it amplifies noise, especially in ill-conditioned channels [1, 3]. The 

LMMSE detector improves performance in noisy environments by introducing a regularization 

term to balance noise enhancement and interference suppression, but this comes at the cost of 

higher computational complexity [1, 3]. 

To reduce the complexity of linear detection, iterative methods have been proposed. In particular, 

the Conjugate Gradient (CG) algorithm has gained attention as a low-complexity alternative that 

approximates LMMSE performance without directly inverting the channel matrix [4–6]. 

CG-based detectors have been shown to achieve near-optimal performance while significantly 

reducing computational overhead, making them suitable for large-scale and massive MIMO 

systems [4–6]. 

Recent works have also focused on realistic implementation and evaluation of CG-based  detection. 

Frameworks such as Sionna facilitate accurate simulations of massive MIMO systems, including 

channel effects, spatial correlation, and varying SNR conditions [7, 9, 10]. These platforms allow 

researchers to evaluate the convergence behavior, bit error rate (BER), and computational 

complexity of CG-based detectors in scenarios that closely resemble practical 5G and 6G 

deployments. 
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3. System Model 

 
3.1 MIMO Signal Model 

Multiple-Input Multiple-Output (MIMO) systems form a core component of modern wireless 

communication standards such as LTE, 5G NR, and future 6G networks. The fundamen- tal 

narrowband MIMO signal model is expressed as 

y = Hx + n, (1) 

 

where y ∈ CNr ×1 is the received signal vector, H ∈ CNr ×Nt is the channel matrix, x ∈ CNt ×1 is the 

transmitted symbol vector, and n ∈ CNr ×1 represents additive white Gaussian noise (AWGN) with 

zero mean and variance σ 2. Each transmitted symbol is drawn from a modulation constellation 

such as QAM. 

 

3.2 Transceiver Operation 

In a typical MIMO transceiver, input data bits are first encoded for error correction, then mapped 

to complex symbols and transmitted simultaneously across multiple antennas. At the receiver, the 

received signal is processed through channel estimation, equalization, and signal detection to 

recover the transmitted symbols. Finally, demodulation and decoding reconstruct the original 

bitstream. This architecture enables spatial multiplexing and diversity gains, improving spectral 

efficiency and link reliability [1–3]. 

 

 

 

 

 

 

 

 

 

 

Figure 1: MIMO System Transmit-Receive Block Diagram 
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4. System Model 

 
4.1 Channel Model Overview 

In this work, we evaluate the performance of the Conjugate Gradient (CG) detector under various 

channel conditions in a basic MIMO system. Specifically, we consider both uncorrelated and 

spatially correlated channels to study how antenna correlation affects detection performance and 

convergence speed. 

Uncorrelated channels serve as a baseline scenario, where each transmit-receive antenna pair 

experiences independent Rayleigh fading. In contrast, spatially correlated channels arise in 

practical deployments due to limited antenna spacing or environmental scattering, which 

introduces statistical dependencies between antenna elements. Understanding CG performance in 

both scenarios is critical for assessing its suitability in realistic 5G and 6G MIMO systems. For 

correlated channels, we adopt the Kronecker correlation model [10] with exponential correlation 

matrices for both transmitter and receiver sides. By varying the correlation coefficient and the 

number of CG iterations, we investigate the trade-off between computational complexity and 

detection accuracy, providing a comprehensive view of CG performance across different channel 

conditions. 

 

4.2 Flat Fading Assumption 

For simplicity, we assume flat-fading channels, where each transmit-receive antenna pair 

experiences a single complex gain that remains constant over the symbol period. This 

simplification allows us to focus on evaluating the CG detector without additional complications 

from frequency-selective fading, making it suitable for our basic MIMO simulations. 
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4.3 Correlated Channel Model (Kronecker) 

In practical MIMO systems, the signals received at multiple antennas are often spatially 

correlated due to limited scattering or insufficient antenna spacing. To model this effect, we 

adopt the Kronecker correlation model [10]: 

 
Hcorr = R

1/2
H  R

1/2
, (2) 

rx iid  tx 

where: 

 

• Hiid ∈ CNr ×Nt contains i.i.d. complex Gaussian entries C N (0, 1) representing an 

uncorrelated Rayleigh fading channel. 

• Rrx ∈ CNr ×Nr is the receive correlation matrix. 

• Rtx ∈ CNt ×Nt is the transmit correlation matrix. 

 

We adopt the exponential correlation model, where each matrix entry is defined as: 

 

[R]i, j = ρ|i− j|, 0 ≤ ρ ≤ 1, (3) 

with ρ being the spatial correlation coefficient. 

In our simulations, we set ρtx = 0.4 for the transmit antennas and ρrx = 0.7 for the receive 

antennas. This setup corresponds to moderate correlation at the transmitter and higher correlation 

at the receiver. The Kronecker model is implemented in Sionna to fully define the correlated 

channel and ensure reproducibility of our results. 

 

4.4 SNR Range Selection and Noise Power 

The performance of the Conjugate Gradient (CG) detector is evaluated over a range of 

signal-to-noise ratio (SNR) values to study its robustness under different channel conditions. In 

our simulations, we consider SNR values from −10 dB to −1 dB, which represent challenging 

uplink scenarios commonly encountered in massive MIMO systems with many users or limited 

transmit power. 

For a normalized transmitted signal vector with unit average power (E[|x|2] = 1), the noise vector 

n is modeled as additive white Gaussian noise (AWGN) with variance: 

 

                                                                        (4) 
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where Nt is the number of transmit antennas. This ensures that the SNR per receive antenna 

matches the desired simulation value. The following Table 4.4 shows the corresponding noise 

variance for selected SNR values. 

 

Table 1 . Noise Variance Corresponding to SNR Values (for Nt = 16) 
 

                                       SNR (dB) Linear SNR Noise Variance σ 2 

-10 0.1 10 

-5 0.316 3.16 

-1 0.794 1.26 

 

 

Reason for chosen range At very low SNR (e.g., −10 dB), the noise dominates the received 

signal, making detection extremely challenging. This allows us to observe CG divergence 

behavior when the number of iterations is insufficient. At higher SNR (e.g., −1 dB), the signal 

power is comparable to noise, and the CG detector converges faster, showing near-LMMSE 

performance with fewer iterations. This SNR range also provides insight into numerical stability, 

since low SNR increases the relative magnitude of rounding errors in iterative methods. 

 

5. Conjugate Gradient Detection 

Conventional LMMSE detection involves inverting the matrix (HH H + σ 2I), which becomes 

computationally prohibitive in massive MIMO. Iterative methods such as the Conjugate Gradient 

(CG) algorithm approximate the LMMSE solution through successive iterations without explicitly 

computing the matrix inverse, achieving comparable detection performance at significantly 

reduced computational cost [4–6]. 

 

5.1 CG Algorithm 

Table 1 summarizes the iterative steps of the CG detector used in this study. 
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⟨r (̂i),r (̂i)⟩ 

⟨d (̂i),Ad (̂i)⟩ 

 

 
 

Algorithm 1 CG Detector (based on [8]) 

Require: A and b 

Ensure: Estimated transmit signal vector sˆ 

1: Initialize sˆ(0) = 0, r̂(0) = b, d̂(0) = r̂(0) 

2: while r̂ ( i )  > ε do 

3: Compute step size: α(i) = ⟨rˆ
(i),rˆ(i)⟩ 

4: Update estimate: sˆ(i+1) = sˆ(i) + α (i)d̂(i) 

5: Update residual: r̂(i+1) = r̂( i) − α (i)Ad̂(i) 

6: Compute direction factor: β (i) = ⟨rˆ
(i+1),rˆ(i+1)⟩ 

7: Update search direction: d̂(i+1) = r̂(i+1) + β (i)d̂(i) 

8: i = i + 1 

9: end while 

10: return sˆ = s (̂i) 
 

Here, α(i) controls the update magnitude, β (i) refines the conjugate search direction, r̂ ( i ) is the 

residual vector, and d̂ ( i) is the search direction. Iterations continue until the residual norm 

is sufficiently small. 

 r̂ ( i) 
 

CG Divergence and Iteration Trade-Off. The CG algorithm is an iterative solver that 

approximates the LMMSE solution without directly inverting the channel matrix. For very few 

iterations, the residual vector may remain large, causing the detector to diverge or produce high 

BER, especially at low SNR where noise dominates. As the number of iterations increases, the 

residual decreases, and the BER approaches the LMMSE benchmark. This trade-off between 

number of iterations and detection accuracy is central to evaluating CG for massive MIMO 

systems. 

 

5.2 Computational Complexity 

After introducing the Conjugate Gradient (CG) algorithm, analyzing its computational complexity 

is crucial to assess efficiency against other detectors. This reveals the operations per iteration and 

overall cost relative to system dimensions, helping balance performance and load. Compared to 

direct methods like LMMSE, it guides the choice of iteration numbers for practical massive MIMO 

systems. Table 1 compares the computational complexity of LMMSE and CG detectors. 

The LMMSE detector provides an exact solution but scales cubically with Nt, which is impractical 

for massive MIMO. The CG detector iteratively approximates the LMMSE solution 
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Table 1: Computational Complexity of LMMSE and CG Detectors 

 

 

t 

t 

 

 

 

t t 

 

with per-iteration complexity O(N2). When the number of iterations L ≪ Nt, CG achieves near-

LMMSE performance with significantly lower computational cost, making it suitable for large-

scale 5G and 6G systems. 

 

6. Simulation Setup 

 
6.1 Simulation Parameters 

This setup, shown in Table 2, provides a scalable and reproducible test environment for analyzing 

detector behavior under realistic massive MIMO configurations. While the current evaluation 

focuses on the flat-fading MIMO case, the same CG-based detection process can be applied 

independently to each subcarrier in wideband MIMO systems, forming the foundation for future 

6G experiments. 

 

                      Table 2: Simulation Parameters and Configurations 

Parameter 5G Configuration 6G Configuration 

MIMO Setup 16 × 64 16 × 128 

Modulation Scheme 16-QAM 128-QAM 

Coding 5G LDPC (rate = 1/2) 5G LDPC (rate = 1/2) 

Detector CG vs LMMSE CG vs LMMSE 

Iterations 2, 5, 10, 16 2, 5, 10, 16 

Metrics BER, Residual Norm BER, Residual Norm 

Channel Type Flat-Fading MIMO Flat-Fading MIMO 

Spatial Correlation ρtx = 0.4, ρrx = 0.7 ρtx = 0.4, ρrx = 0.7 

Tolerance 10−12 10−12 

Detector LMMSE CG 

Matrix inversion 

Matrix-vector multiplication 
O(8N3) 

O(4N2) 

– 

O(4N2 + 4Nt + 4) 
t 

Residual update – O(4N2 + 2Nt) 
t 

Search direction update – O(2Nt) 

Total complexity O(8N3 + 4N2) O(L(8N2 + 14Nt + 8)) 
t 
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7. Results and Discussion 

 
7.1 Effect of Spatial Correlation on 5G-BER 

To evaluate the impact of spatial correlation on massive MIMO detection, we simulated a 16 × 64 

5G MIMO system using the CG detector with multiple iteration counts. Two channel scenarios 

were considered: uncorrelated (i.i.d.) and correlated channels modeled using the Kronecker model 

with exponential correlation coefficients ρtx = 0.4 and ρrx = 0.7. 

These Figures presents the BER performance over SNR values from −10 dB to −1 dB for both 

scenarios. 

 

 

                             Figure 2: BER vs SNR for uncorrelated channel with 2 iterations. 
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                             Figure 3: BER vs SNR for correlated channel with 2 iterations in 5G. 
 

 

 

                          Figure 4: BER vs SNR for uncorrelated channel with 5 iterations in 5G. 
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                          Figure 5: BER vs SNR for correlated channel with 5 iterations in 5G. 
 

 

 

                       Figure 6: BER vs SNR for uncorrelated channel with 10 iterations in 5G. 
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                         Figure 7: BER vs SNR for correlated channel with 10 iterations in 5G. 
 

 

 

                        Figure 8: BER vs SNR for uncorrelated channel with 16 iterations in 5G. 
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Figure 9: BER vs SNR for correlated channel with 16 iterations in 5G. 

 

The results demonstrate that spatial correlation slightly increases BER compared to the 

uncorrelated case. This occurs because correlation reduces the effective rank of the channel 

matrix, which increases interference among transmitted streams and slows convergence of the CG 

detector. The effect is more pronounced at low SNR values where noise dominates the signal, 

highlighting that correlated channels are inherently more challenging for iterative detection. 

These observations confirm that spatial correlation must be considered when evaluating the 

performance of CG-based detection algorithms in massive MIMO systems. Additionally, they 

illustrate the trade-off between channel conditions and detector performance: while CG 

approximates LMMSE effectively, its convergence and resulting BER are sensitive to the 

underlying channel correlation structure. 

 

7.2 Performance of CG in Correlated 5G vs 6G Channels 

Building upon the 5G results presented in the previous Section, we now evaluate the CG detector 

performance in correlated 5G and 6G MIMO channels. The goal is to investigate how the detector 

scales with increasing system size and higher-order modulation while maintaining  near-LMMSE 

performance. 

For this analysis, we focus on two representative iteration numbers, 5 and 10, to illustrate the 

trade-off between convergence speed and system dimensions.  
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As observed previously, spatial  correlation affects BER in 5G; here we examine whether the 

same trend holds for larger 6G configurations and how additional iterations impact 

performance in both systems. These results demonstrate the scalability and robustness of the 

CG detector in massive MIMO systems under realistic correlated channels. 

 

 

Figure 10: BER vs SNR for correlated channel with 5 iterations in 6G. 
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Figure 11: BER vs SNR for correlated channel with 10 iterations in 6G. We 

can clearly observe that: 

• For 5 iterations, the 5G system achieves slightly lower BER than 6G. This is due to the 

smaller channel dimension and lower-order modulation, which allow faster residual 

convergence in fewer iterations. 

• For 10 iterations, the 6G system achieves better BER performance. With additional 

iterations, the larger 6G channel matrix benefits more from iterative refinement, allowing 

the CG detector to approach LMMSE-level performance and slightly surpass 5G in these 

settings. 

• This demonstrates that CG’s effectiveness depends not only on SNR and correlation but 

also on the number of iterations relative to system size and modulation order. 

Overall, these results confirm that CG detection scales well with system dimensions and can 

achieve near-optimal performance in 6G massive MIMO with a reasonable number of iterations. 

 

7.3 Residual Convergence Analysis 

The residual norm r(i) 
 provides insight into the convergence of the CG detector. Fig. 12 shows 

the residual evolution for correlated 5G channels, while Fig. 13 shows the residuals for correlated 

6G channels. 
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Figure 12: BER performance of the CG detector for 5G correlated and uncorrelated channels. 
 

 

 

 

 

 

 

Figure 13: BER performance of the CG detector for 6G correlated and uncorrelated channels. 
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For 5G, the residual decreases rapidly with iteration count, and after 15 iterations, it is sufficiently 

small to ensure near-LMMSE detection accuracy. For 6G, the initial residual is higher due to the 

larger system size and higher modulation order, but it also converges with sufficient iterations. 

These residual trends explain the BER behavior observed: 

At low iteration counts, residuals remain large, resulting in higher BER, especially for correlated 

channels. 

As iterations increase, residuals reduce and BER approaches the LMMSE benchmark. 

The comparison between 5G and 6G shows that CG scales well, achieving similar convergence 

and performance with a reasonable number of iterations. 

The results show that CG converges more slowly in larger MIMO systems due to the increased 

number of unknowns, while channel correlation slightly slows convergence by increasing the 

condition number. A convergence threshold of 10−12 ensures near-LMMSE accuracy without 

unnecessary computation. Overall, the residual analysis confirms that CG closely approximates 

the LMMSE solution and indicates how many iterations are needed for different system sizes and 

channel conditions. 

 

7.4 Computational Complexity 

The computational complexity of the Conjugate Gradient (CG) detector, measured in memory 

cost (bits), depends strongly on the number of iterations. With 10 iterations, CG requires 22,820 

bits, which is lower than the 33,792 bits needed by the LMMSE detector. However, increasing the 

number of iterations to 20 raises CG’s memory usage to 45,640 bits, surpassing LMMSE. This 

behavior is consistent in both 5G and dense 6G configurations with Nt = 16 transmit antennas. It 

highlights an important trade-off: CG is more efficient when the number of iterations is smaller 

than the number of transmit antennas, but becomes more resource-intensive if this threshold is 

exceeded, which is a key consideration in massive MIMO system design. 

 

8. Conclusion 

In this paper, we investigated the Conjugate Gradient (CG) detector as a low-complexity 

alternative to LMMSE for massive MIMO systems in 5G and 6G scenarios. We analyzed its 

performance over both uncorrelated and correlated flat-fading channels and evaluated the impact 

of iteration numbers on BER and residual convergence. Simulation results demonstrated that CG 

achieves near-LMMSE detection accuracy while significantly reducing computational complexity 

for a moderate number of iterations. Furthermore, spatial correlation slight degrades performance, 

but CG remains robust, and its efficiency scales well with system dimensions. 
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These findings confirm that CG-based detection is a practical and scalable solution for real-time 

massive MIMO deployments, providing an effective trade-off between performance and 

complexity in next-generation wireless networks. 
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