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Abstract

Massive multiple-input multiple-output (MIMO) systems are a cornerstone of 5G and emerging
6G wireless networks due to their ability to provide high spectral efficiency and improved
reliability. However, signal detection in large-scale MIMO systems remains a major challenge
because of the high computational complexity associated with conventional linear detectors. In
this paper, we investigate the Conjugate Gradient (CG) algorithm as a low-complexity iterative
detection technique for massive MIMO systems. The MIMO detection problem is formulated as
a system of linear equations and solved using the CG method implemented within the Sionna
simulation framework. The convergence behavior and bit error rate (BER) performance of the
proposed detector are analyzed under different signal-to-noise ratio (SNR) levels and spatial
correlation scenarios. Simulation results show that the CG-based detector achieves near-optimal
BER performance while significantly reducing computational complexity compared to classical
linear detectors such as the linear minimum mean square error (LMMSE) detector. These results
demonstrate that CG-based detection is a promising and efficient solution for practical large-
scale MIMO deployments.
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1. Introduction

The growth of data-intensive applications, IoT, and autonomous systems demands higher
throughput and lower latency in wireless communications. Massive MIMO enhances spectral
efficiency, robustness, and spatial multiplexing but makes signal detection challenging under
interference and spatial correlation. Conventional detectors like ZF and LMMSE are reliable but
computationally expensive. The Conjugate Gradient (CG) algorithm offers a low-complexity
iterative alternative, approximating LMMSE performance efficiently. In this paper, we implement
CG-based MIMO detection using Sionna and analyze its BER, convergence, and computational

complexity under various SNR and channel conditions.

2. Related Work

Several linear detection techniques have been proposed for MIMO systems to address the
challenges of high-dimensional signal detection. Among the most common are the Zero-Forcing
(ZF) and Linear Minimum Mean Square Error (LMMSE) detectors. The ZF detector aims to
completely eliminate interference by inverting the channel matrix. Although it provides
interference-free estimation, it amplifies noise, especially in ill-conditioned channels [1,3]. The
LMMSE detector improves performance in noisy environments by introducing a regularization
term to balance noise enhancement and interference suppression, but this comes at the cost of
higher computational complexity [1, 3].

To reduce the complexity of linear detection, iterative methods have been proposed. In particular,
the Conjugate Gradient (CG) algorithm has gained attention as a low-complexity alternative that
approximates LMMSE performance without directly inverting the channel matrix [4—6].
CG-based detectors have been shown to achieve near-optimal performance while significantly
reducing computational overhead, making them suitable for large-scale and massive MIMO
systems [4-6].

Recent works have also focused on realistic implementation and evaluation of CG-based detection.
Frameworks such as Sionna facilitate accurate simulations of massive MIMO systems, including
channel effects, spatial correlation, and varying SNR conditions [7, 9, 10]. These platforms allow
researchers to evaluate the convergence behavior, bit error rate (BER), and computational
complexity of CG-based detectors in scenarios that closely resemble practical 5G and 6G

deployments.
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3. System Model

3.1 MIMO Signal Model

Multiple-Input Multiple-Output (MIMO) systems form a core component of modern wireless
communication standards such as LTE, 5G NR, and future 6G networks. The fundamen- tal

narrowband MIMO signal model is expressed as
y=Hx+n, (1)

where y € CV*! is the received signal vector, H € C¥*M is the channel matrix, x € CV*! is the
transmitted symbol vector, and n € CV*! represents additive white Gaussian noise (AWGN) with

zero mean and variance 02, Each transmitted symbol is drawn from a modulation constellation
such as QAM.

3.2 Transceiver Operation

In a typical MIMO transceiver, input data bits are first encoded for error correction, then mapped
to complex symbols and transmitted simultaneously across multiple antennas. At the receiver, the
received signal is processed through channel estimation, equalization, and signal detection to
recover the transmitted symbols. Finally, demodulation and decoding reconstruct the original
bitstream. This architecture enables spatial multiplexing and diversity gains, improving spectral

efficiency and link reliability [1-3].
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Figure 1: MIMO System Transmit-Receive Block Diagram
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4. System Model

4.1 Channel Model Overview

In this work, we evaluate the performance of the Conjugate Gradient (CG) detector under various
channel conditions in a basic MIMO system. Specifically, we consider both uncorrelated and
spatially correlated channels to study how antenna correlation affects detection performance and
convergence speed.

Uncorrelated channels serve as a baseline scenario, where each transmit-receive antenna pair
experiences independent Rayleigh fading. In contrast, spatially correlated channels arise in
practical deployments due to limited antenna spacing or environmental scattering, which
introduces statistical dependencies between antenna elements. Understanding CG performance in
both scenarios is critical for assessing its suitability in realistic 5G and 6G MIMO systems. For
correlated channels, we adopt the Kronecker correlation model [10] with exponential correlation
matrices for both transmitter and receiver sides. By varying the correlation coefficient and the
number of CG iterations, we investigate the trade-off between computational complexity and
detection accuracy, providing a comprehensive view of CG performance across different channel

conditions.

4.2 Flat Fading Assumption

For simplicity, we assume flat-fading channels, where each transmit-receive antenna pair
experiences a single complex gain that remains constant over the symbol period. This
simplification allows us to focus on evaluating the CG detector without additional complications

from frequency-selective fading, making it suitable for our basic MIMO simulations.
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4.3 Correlated Channel Model (Kronecker)

In practical MIMO systems, the signals received at multiple antennas are often spatially
correlated due to limited scattering or insufficient antenna spacing. To model this effect, we

adopt the Kronecker correlation model [10]:

Heor = R7?H R7Z, Q)

rx id  tx

where:

« Hiiq € CY*M contains i.i.d. complex Gaussian entries CN (0, 1) representing an
uncorrelated Rayleigh fading channel.

« Ry € CN*Nr ig the receive correlation matrix.

¢ Ry € CV*Ni ig the transmit correlation matrix.

We adopt the exponential correlation model, where each matrix entry is defined as:

[R]i,j = p|i—j|, O0<sp=l, 3)

with p being the spatial correlation coefficient.

In our simulations, we set px = 0.4 for the transmit antennas and px = 0.7 for the receive
antennas. This setup corresponds to moderate correlation at the transmitter and higher correlation
at the receiver. The Kronecker model is implemented in Sionna to fully define the correlated

channel and ensure reproducibility of our results.

4.4 SNR Range Selection and Noise Power

The performance of the Conjugate Gradient (CG) detector is evaluated over a range of

signal-to-noise ratio (SNR) values to study its robustness under different channel conditions. In
our simulations, we consider SNR values from —-10 dB to -1 dB, which represent challenging
uplink scenarios commonly encountered in massive MIMO systems with many users or limited

transmit power.

For a normalized transmitted signal vector with unit average power (E[|x|?] = 1), the noise vector
n is modeled as additive white Gaussian noise (AWGN) with variance:

2 N 4)
1 DSNR(U} 10
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where N; is the number of transmit antennas. This ensures that the SNR per receive antenna
matches the desired simulation value. The following Table 4.4 shows the corresponding noise

variance for selected SNR values.

Table 1. Noise Variance Corresponding to SNR Values (for N; = 16)

SNR (dB) Linear SNR Noise Variance 0

-10 0.1 10
-5 0.316 3.16
-1 0.794 1.26

Reason for chosen range At very low SNR (e.g., =10 dB), the noise dominates the received
signal, making detection extremely challenging. This allows us to observe CG divergence
behavior when the number of iterations is insufficient. At higher SNR (e.g., -1 dB), the signal
power is comparable to noise, and the CG detector converges faster, showing near-LMMSE
performance with fewer iterations. This SNR range also provides insight into numerical stability,

since low SNR increases the relative magnitude of rounding errors in iterative methods.

5. Conjugate Gradient Detection

Conventional LMMSE detection involves inverting the matrix HH + 021), which becomes
computationally prohibitive in massive MIMO. Iterative methods such as the Conjugate Gradient
(CG) algorithm approximate the LMMSE solution through successive iterations without explicitly
computing the matrix inverse, achieving comparable detection performance at significantly

reduced computational cost [4-6].

5.1 CG Algorithm

Table 1 summarizes the iterative steps of the CG detector used in this study.

65



NCAEEE'"25 Islamic University Journal of Applied Sciences (IUJAS), Special Issue, Feb. 2026, 60-77

Algorithm 1 CG Detector (based on [8])
Require: A andb

Ensure: Estimated transmit signal vector s~
1: Tnitialize s"® = 0, #» = b, d® = #©
2: while [ || > £ do
SO
T d, AdA(l_')) .
4: Update estimate: s"0+) = §° 4+ gDq®
5. Update residual; 0+ = () —gDA4®
. . : Ai+1) rGi+1)
6 Compute direction factor: 8@ = ‘FT@;T)Z
7. Update search direction: d¥*1 = (+h 4 g0gW®
8: i=i+1
9: end while

3: Compute step size: at

10: returns” = "0

Here, @ controls the update magnitude, 8 @ refines the conjugate search direction, () is the
residual vector, and d ) is the search direction. Iterations continue until the residual norm [[§ @) |

is sufficiently small.

CG Divergence and Iteration Trade-Off. The CG algorithm is an iterative solver that
approximates the LMMSE solution without directly inverting the channel matrix. For very few
iterations, the residual vector may remain large, causing the detector to diverge or produce high
BER, especially at low SNR where noise dominates. As the number of iterations increases, the
residual decreases, and the BER approaches the LMMSE benchmark. This trade-off between
number of iterations and detection accuracy is central to evaluating CG for massive MIMO

systems.

5.2 Computational Complexity

After introducing the Conjugate Gradient (CG) algorithm, analyzing its computational complexity
is crucial to assess efficiency against other detectors. This reveals the operations per iteration and
overall cost relative to system dimensions, helping balance performance and load. Compared to
direct methods like LMMSE, it guides the choice of iteration numbers for practical massive MIMO
systems. Table 1 compares the computational complexity of LMMSE and CG detectors.

The LMMSE detector provides an exact solution but scales cubically with N;, which is impractical

for massive MIMO. The CG detector iteratively approximates the LMMSE solution
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Table 1: Computational Complexity of LMMSE and CG Detectors

Detector LMMSE CG
Matrix inversion O(8N?) -
Matrix-vector multiplication 5 O(4N? + 4N, + 4)
O(4N?) t

Residual update — O(4N? }L 2N)

Search direction update — OQN)
. 2
’lt“otal con}ple)ﬂty O(BN® + 4MN?) O(L(8N- +t14Nt +8))

with per-iteration complexity O(N2). When the number of iterations L << N;, CG achieves near-
LMMSE performance with significantly lower computational cost, making it suitable for large-

scale 5G and 6G systems.

6. Simulation Setup

6.1 Simulation Parameters

This setup, shown in Table 2, provides a scalable and reproducible test environment for analyzing
detector behavior under realistic massive MIMO configurations. While the current evaluation
focuses on the flat-fading MIMO case, the same CG-based detection process can be applied
independently to each subcarrier in wideband MIMO systems, forming the foundation for future

6G experiments.

Table 2: Simulation Parameters and Configurations

Parameter 5G Configuration 6G Configuration
MIMO Setup 16 x 64 16x 128

Modulation Scheme 16-QAM 128-QAM

Coding 5G LDPC (rate=1/2) 5G LDPC (rate = 1/2)
Detector CG vs LMMSE CG vs LMMSE
Iterations 2,5,10, 16 2,5,10, 16

Metrics BER, Residual Norm  BER, Residual Norm
Channel Type Flat-Fading MIMO Flat-Fading MIMO
Spatial Correlation P = 0.4, px = 0.7 Pix = 0.4, px = 0.7
Tolerance 10712 10712

67



NCAEEE'"25 Islamic University Journal of Applied Sciences (IUJAS), Special Issue, Feb. 2026, 60-77

7. Results and Discussion

7.1 Effect of Spatial Correlation on SG-BER

To evaluate the impact of spatial correlation on massive MIMO detection, we simulated a 16 x 64
5G MIMO system using the CG detector with multiple iteration counts. Two channel scenarios
were considered: uncorrelated (i.1.d.) and correlated channels modeled using the Kronecker model
with exponential correlation coefficients px = 0.4 and pix = 0.7.

These Figures presents the BER performance over SNR values from —10 dB to -1 dB for both
scenarios.

BER Comparison: CG vs LMMSE Equalizer with 2 iterations
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Figure 2: BER vs SNR for uncorrelated channel with 2 iterations.
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BER Comparison: CG vs

LMMSE Equalizer with 2 iterations
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Figure 3: BER vs SNR for correlated channel with 2 iterations in 5G

BER Comparison: CG vs LMMSE Equalizer with 5 iterations
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Figure 4: BER vs SNR for uncorrelated channel with 5 iterations in 5G.
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BER Comparison: CG vs LMMSE Equalizer with 5 iterations
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Figure 5: BER vs SNR for correlated channel with 5 iterations in 5G.

BER Comparison: CG vs LMMSE Equalizer with 10 iterations
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Figure 6: BER vs SNR for uncorrelated channel with 10 iterations in 5G.
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BER Comparison: CG vs LMMSE Equalizer with 10 iterations
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Figure 7: BER vs SNR for correlated channel with 10 iterations in 5G.

BER Comparison: CG vs LMMSE Equalizer with 16 iterations
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Figure 8: BER vs SNR for uncorrelated channel with 16 iterations in 5G.
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BER Comparison: CG vs LMMSE Equalizer with 16 iterations
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Figure 9: BER vs SNR for correlated channel with 16 iterations in 5G.

The results demonstrate that spatial correlation slightly increases BER compared to the
uncorrelated case. This occurs because correlation reduces the effective rank of the channel
matrix, which increases interference among transmitted streams and slows convergence of the CG
detector. The effect is more pronounced at low SNR values where noise dominates the signal,
highlighting that correlated channels are inherently more challenging for iterative detection.

These observations confirm that spatial correlation must be considered when evaluating the
performance of CG-based detection algorithms in massive MIMO systems. Additionally, they
illustrate the trade-off between channel conditions and detector performance: while CG
approximates LMMSE effectively, its convergence and resulting BER are sensitive to the

underlying channel correlation structure.

7.2 Performance of CG in Correlated 5G vs 6G Channels

Building upon the 5G results presented in the previous Section, we now evaluate the CG detector
performance in correlated 5G and 6G MIMO channels. The goal is to investigate how the detector
scales with increasing system size and higher-order modulation while maintaining near-LMMSE
performance.

For this analysis, we focus on two representative iteration numbers, 5 and 10, to illustrate the

trade-off between convergence speed and system dimensions.
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As observed previously, spatial correlation affects BER in 5G; here we examine whether the
same trend holds for larger 6G configurations and how additional iterations impact
performance in both systems. These results demonstrate the scalability and robustness of the
CG detector in massive MIMO systems under realistic correlated channels.

BER Comparison: CG vs LMMSE Equalizer with 5 iterations
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Figure 10: BER vs SNR for correlated channel with 5 iterations in 6G.
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BER Comparison: CG vs LMMSE Equalizer with 10 iterations
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Figure 11: BER vs SNR for correlated channel with 10 iterations in 6G. We

can clearly observe that:

* For 5 iterations, the 5G system achieves slightly lower BER than 6G. This is due to the
smaller channel dimension and lower-order modulation, which allow faster residual

convergence in fewer iterations.

* For 10 iterations, the 6G system achieves better BER performance. With additional
iterations, the larger 6G channel matrix benefits more from iterative refinement, allowing
the CG detector to approach LMMSE-level performance and slightly surpass 5G in these
settings.

 This demonstrates that CG’s effectiveness depends not only on SNR and correlation but

also on the number of iterations relative to system size and modulation order.
Overall, these results confirm that CG detection scales well with system dimensions and can
achieve near-optimal performance in 6G massive MIMO with a reasonable number of iterations.
7.3 Residual Convergence Analysis

The residual norm [[r”|| provides insight into the convergence of the CG detector. Fig. 12 shows
the residual evolution for correlated 5G channels, while Fig. 13 shows the residuals for correlated
6G channels.
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CG Residual vs Iteration
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Figure 12: BER performance of the CG detector for 5G correlated and uncorrelated channels.

3 CG Residual vs Iteration
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Figure 13: BER performance of the CG detector for 6G correlated and uncorrelated channels.
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For 5@, the residual decreases rapidly with iteration count, and after 15 iterations, it is sufficiently
small to ensure near-LMMSE detection accuracy. For 6G, the initial residual is higher due to the
larger system size and higher modulation order, but it also converges with sufficient iterations.
These residual trends explain the BER behavior observed:

At low iteration counts, residuals remain large, resulting in higher BER, especially for correlated
channels.

As iterations increase, residuals reduce and BER approaches the LMMSE benchmark.

The comparison between 5G and 6G shows that CG scales well, achieving similar convergence
and performance with a reasonable number of iterations.

The results show that CG converges more slowly in larger MIMO systems due to the increased
number of unknowns, while channel correlation slightly slows convergence by increasing the
condition number. A convergence threshold of 10-!> ensures near-LMMSE accuracy without
unnecessary computation. Overall, the residual analysis confirms that CG closely approximates
the LMMSE solution and indicates how many iterations are needed for different system sizes and

channel conditions.

7.4 Computational Complexity

The computational complexity of the Conjugate Gradient (CG) detector, measured in memory
cost (bits), depends strongly on the number of iterations. With 10 iterations, CG requires 22,820
bits, which is lower than the 33,792 bits needed by the LMMSE detector. However, increasing the
number of iterations to 20 raises CG’s memory usage to 45,640 bits, surpassing LMMSE. This
behavior is consistent in both 5G and dense 6G configurations with N; = 16 transmit antennas. It
highlights an important trade-off: CG is more efficient when the number of iterations is smaller
than the number of transmit antennas, but becomes more resource-intensive if this threshold is

exceeded, which is a key consideration in massive MIMO system design.

8. Conclusion

In this paper, we investigated the Conjugate Gradient (CG) detector as a low-complexity
alternative to LMMSE for massive MIMO systems in 5G and 6G scenarios. We analyzed its
performance over both uncorrelated and correlated flat-fading channels and evaluated the impact
of iteration numbers on BER and residual convergence. Simulation results demonstrated that CG
achieves near-LMMSE detection accuracy while significantly reducing computational complexity
for a moderate number of iterations. Furthermore, spatial correlation slight degrades performance,

but CG remains robust, and its efficiency scales well with system dimensions.
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These findings confirm that CG-based detection is a practical and scalable solution for real-time
massive MIMO deployments, providing an effective trade-off between performance and

complexity in next-generation wireless networks.
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