
NCAEEE'25                         Islamic University Journal of Applied Sciences (IUJAS), Special Issue, Feb. 2026,111-126 
 

111 

Islamic University Journal of Applied Sciences (IUJAS) 
https://journals.iu.edu.sa/jesc  

Special Issue, February 2026, Pages 111-126 
https://igee.univ-boumerdes.dz/ncaeee25/  

 

Enhancing Quadrotor UAV Trajectory Tracking Using Adaptive 

Fuzzy PID Control 
 

Hocine LOUBAR 1*, Mohammed Idris ARIF 1, Reda Zakaria BAFFOU1, Razika Zamoum 

BOUSHAKI 1 

 

1 M’hamed Bougara University (UMBB), Boumerdes, Algeria, h.loubar@univ-boumerdes.dz; 

dm.arif@ensta.edu.dz; redazakariabaffou@gmail.com; r.boushaki@univ-boumerdes.dz  

 

*Corresponding author: (Hocine LOUBAR), Email Address: h.loubar@univ-boumerdes.dz 

  
 

Abstract 

Unmanned aerial vehicles (UAVs) require precise and robust control strategies to ensure safe and 

efficient flight. This work focuses on the Adaptive Fuzzy PID (AFPID) controller as the main method, 

which integrates classical Proportional-Integral-Derivative (PID) control with fuzzy logic principles 

to achieve real-time parameter adaptation. The PID and fuzzy PID controllers are considered as 

baseline methods for performance comparison with the adaptive fuzzy PID. Simulation was done 

using MATLAB to evaluate the controllers in terms of trajectory tracking, settling time, Root Mean 

Square error and robustness under disturbance. Since PID and FPID exhibited similar response shapes 

to AFPID, only their performance metrics were reported for comparison. The results demonstrate that 

all controllers successfully stabilize the UAV without steady-state error, while AFPID provides 

slightly improved settling times and disturbance rejection compared to PID and FPID. These findings 

confirm the effectiveness of adaptive fuzzy control as a reliable solution for UAV path-tracking tasks. 
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1. Introduction 

Unmanned aerial vehicles (UAVs) are increasingly employed in diverse applications such as 

surveillance [1], delivery [2], and Agriculture [3], where precise and robust control strategies are 

essential to ensure stable flight and accurate trajectory tracking. 

In recent quadrotor UAV research, advanced nonlinear based controllers (e.g., backstepping, sliding-

mode, and model predictive control) have been widely studied to handle the vehicle’s nonlinear 

dynamics [4]. While these approaches can provide high precision, they often involve complex 

modeling or heavy computation, making classical proportional–integral–derivative (PID) control 

attractive for its simplicity and ease of implementation. Quadrotor UAV control has been extensively 

studied, and PID-based controllers are commonly used but often enhanced with fuzzy logic for greater 

robustness [5]. For example, Melo et al. (2022) applied a fuzzy gain-scheduling mechanism to adjust 

PID gains for quadrotor altitude and position control, reporting better trajectory tracking and resilience 

than a conventional PID [5]. Ye et al. (2024) developed an adaptive fuzzy‐PID controller for a 

quadrotor, finding much lower overshoot and higher disturbance rejection compared to a standard PID 

[6]. These studies demonstrate that combining a classical PID structure with real-time fuzzy adaptation 

(AFPID) can significantly enhance UAV flight stability and tracking performance. 

In this work, the Adaptive Fuzzy PID (AFPID) controller is presented as the main control approach 

for trajectory tracking. The AFPID combines the principles of classical proportional–integral–

derivative (PID) and fuzzy PID (FPID) control, while introducing adaptive mechanisms that 

dynamically adjust the control gains in real time to enhance robustness and flexibility. For comparison, 

PID and FPID are considered as baseline methods. Since their response plots were nearly identical to 

AFPID, only their performance metrics—such as settling time and root mean square error, and 

robustness under disturbance —are reported in the results section. 

The paper structured as follows. Section II presents the modelling of the quadrotor. Section III details 

the control methodology, including the baseline controllers and the adaptive fuzzy PID. Section IV 

describes the simulation setup, while Section V presents and discusses the results. Finally, Section VI 

provides the conclusion. 

2. Dynamic Model of Quadrotor 

This section explores the dynamic modelling, which includes forces and torques affecting the 

quadrotor movement. 

As shown in figure 1, two reference frames, also called coordinate system, are usually used to describe 

the absolute special position and orientation of the quadrotor [7]. 
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The motion of the quadrotor can be classified into two subsystems; rotational subsystem which 

contains the angles: roll ϕ, pitch θ and yaw ψ. Translational subsystem contains altitude z, and x and 

y position. 

 

2.1 Rotational Subsystem 

Using the Newton-Euler method, to deduce the rotational equations of motion which are derived in 

the body frame [7]: 

𝐼ω̇ + 𝜔 × 𝐼𝜔 = 𝑀𝐵                                                                        (1) 

Where 𝐼 is the inertia matrix of the quadrotor and it is a diagonal matrix, 𝜔 represents the angular body 

rate, 𝑀𝐵 refers to the moments acting on the quadrotor in the body frame, and ω̇ is the rate of change 

of angular momentum in the body frame. So, by defining exactly the Inertia matrix and the moment of 

quadrotor:  

• Inertia matrix  

The inertia matrix is a diagonal matrix denoted as: 

𝐼 = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0 𝐼𝑧𝑧

]                                                                   (2)                          

 The off-diagonal elements, resulting from inertia, are null because of the quadrotor's symmetry. 

Where 𝐼𝑥𝑥, 𝐼𝑦𝑦and 𝐼𝑧𝑧 are the area moments of inertia about the principal axes in the body frame. 

• Moments of the Quadrotor (MB): 

The rotor generates a moment 𝑀𝑖, which has an opposite direction to the directions of the 

corresponding rotor. It divides into three moments in the body frame’s axis, which are:    𝑀𝑥,  𝑀𝑦  and 

𝑀𝑧 . 

       The moment of quadrotor will be defined as 𝑀𝐵 = [ 𝑀𝑥   𝑀𝑦   𝑀𝑧] 

 

Figure 1.  Quadrotor reference frames 
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       𝑀𝐵 = [

𝑙𝐾𝑓(− 𝛺1
2 + 𝛺2

2  +  𝛺3
2  − 𝛺4

2) 

𝑙𝐾𝑓( 𝛺1
2 − 𝛺2

2  +  𝛺3
2  − 𝛺4

2) 

𝐾𝑀(𝛺1
2  +  𝛺2

2 − 𝛺3
2 − 𝛺4

2 ) 

]                                          (3)   

Where: 

𝑙: is the distance between the center of mass of the quadrotor and the axis of rotation of each rotor,𝑲𝒇 

and 𝑲𝑴 are the aerodynamic force and moment constants, respectively. And 𝜴𝒊 is the angular velocity 

of rotor i. 

In addition, by replacing (3) in (1) and around the hover position, small angle assumption is made the 

equation will be:  

𝐼 [

𝜙̈

𝜃̈
𝜓̈

] = [

𝑙𝐾𝑓(− 𝛺1
2 + 𝛺2

2  +  𝛺3
2  − 𝛺4

2) 

𝑙𝐾𝑓( 𝛺1
2 − 𝛺2

2  +  𝛺3
2  − 𝛺4

2) 

𝐾𝑀(𝛺1
2  + 𝛺2

2 − 𝛺3
2 − 𝛺4

2 ) 

] − [

𝜙̇

𝜃̇
𝜓̇

] × 𝐼 [

𝜙̇

𝜃̇
𝜓̇

]                                  (4)                 

 

After simplifying (4), the state space functions of rotational subsystem will be: 

{
  
 

  
 𝜙̈ = 𝜃̇𝜓̇ (

𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥
) +

𝑙

𝐼𝑥𝑥
𝐾𝑓(−𝛺1

2 + 𝛺2
2 + 𝛺3

2 −𝛺4
2) 

𝜃̈ = 𝜙̇𝜓̇ (
𝐼𝑧𝑧 − 𝐼𝑥𝑥
𝐼𝑦𝑦

) +
𝑙

𝐼𝑦𝑦
𝐾𝑓( 𝛺1

2 − 𝛺2
2 + 𝛺3

2 − 𝛺4
2) 

𝜓̈ = 𝜙̇𝜃̇ (
𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧
) +

1

𝐼𝑧𝑧
𝐾𝑀(𝛺1

2 + 𝛺2
2 − 𝛺3

2 − 𝛺4
2 )  

                                    (5) 

2.2 Translational Subsystem  

The translational subsystem is based on Newton’s second law of motion in the Earth frame [7]:  

                         𝑚𝑟̈ = [
0
0

−𝑚𝑔
] − 𝐹𝑎 + 𝑅𝐹𝐵                                                        (6)    

Where r refers to the distance between the quadrotor and the inertial frame;  𝑟 =  [𝑥 𝑦 𝑧]ᵀ, m is the 

mass of the quadrotor, 

and 𝑔 is the gravitational acceleration (𝑔 = 9.81 𝑚/𝑠2), while 𝐹𝑎 is represents the drag forces 

(negligible), R is the rotation matrix, and 𝐹𝐵 refers to the nongravitational forces acting on the 

quadrotor. 

The nongravitational forces are multiplied by the rotation matrix to transform the thrust forces from 

the body frame into the inertial frame. 
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In this case, we consider only the horizontal orientation without considering the rolling and the 

pitching, since the only nongravitational force acting of the quadrotor is the thrust produced by the 

propellers, hence we obtain: 

              𝑭𝑩 = [

𝟎
𝟎

𝑲𝒇(𝜴𝟏
𝟐 + 𝜴𝟐

𝟐 + 𝜴𝟑
𝟐 + 𝜴𝟒

𝟐 ) 
]                                              (7) 

2.3 Rotation matrix 

The quadrotor's orientation is defined by the rotation R from the body frame to the inertial frame. This 

orientation is characterized by roll (ϕ), pitch (θ), and yaw (ψ) angles, which respectively denote 

rotations about the X, Y, and Z-axes. After simplification it will be: 

𝑅 =  [

cos(𝜃) cos(𝜓) cos(𝜓) sin(𝜃) sin(𝜙) − cos(𝜙) sin(𝜓) cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓)

cos(𝜃) sin(𝜓) sin(𝜙) sin(𝜃) sin(𝜓) + cos(𝜃) cos(𝜓) cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜃) cos(𝜓)

− sin(𝜃) sin(𝜙) cos(𝜃) 𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜃)
]     (8) 

Thus, by putting (7) and (8) in (6), the result will be: 

𝑚 [
𝑥̈
𝑦̈
𝑧̈

] = [
0
0

−𝑚𝑔
] +

[
 
 
 
 
(sin(𝜙) sin(𝜓) + cos(𝜙) cos(𝜓) sin(𝜃))(𝐾𝑓(𝛺1

2 + 𝛺2
2 + 𝛺3

2 + 𝛺4
2 ))

(cos(𝜙) sin(𝜓) sin(𝜃) − cos(𝜓) sin(𝜙)) (𝐾𝑓(𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2 ))

cos(𝜙) cos(𝜃) (𝐾𝑓(𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2 )) ]
 
 
 
 

                   (9) 

After simplifying (9), the state space functions of translational subsystem will be:  

 

{
 
 

 
 𝑥̈ = (cos𝜙 sin 𝜃 cos𝜓 + sin𝜙 sin𝜓)

𝐾𝑓(𝛺1
2+𝛺2

2+𝛺3
2+ 𝛺4

2 )

𝑚

𝑦̈ = (cos 𝜙 sin 𝜃 sin𝜓 − sin𝜙 cos𝜓)
𝐾𝑓(𝛺1

2+𝛺2
2+𝛺3

2+ 𝛺4
2 )

𝑚

𝑧̈ = −𝑔 + (cos𝜙 cos 𝜃)
𝐾𝑓(𝛺1

2+𝛺2
2+𝛺3

2+ 𝛺4
2 )

𝑚

                           (10) 

2.4 State Space Representation 

Transforming the acquired mathematical model for the quadrotor into a state space model will help 

make the control problem easier to handle.  

In this simulation, we take 12 state variables, i.e., position, velocity, and attitude of an airframe in the 

inertial frame, and angular rates: 

So, 𝑋 will be represented as a vector.  

X = [𝑥1  𝑥2  𝑥3  𝑥4  𝑥5  𝑥6  𝑥7 𝑥8 𝑥9  𝑥10  𝑥11 𝑥12]
𝑇                                (11) 

Such that: 

X = [𝜙  𝜙̇  𝜃  𝜃̇  𝜓  𝜓̇  𝑥  𝑥̇  𝑦  𝑦̇  𝑧  𝑧̇ ]𝑇                                                (12) 

 



NCAEEE'25                         Islamic University Journal of Applied Sciences (IUJAS), Special Issue, Feb. 2026,111-126 
 

116 

The control input is described by the vector [7]: 

                    𝑈 = [ 𝑈1 𝑈2 𝑈3 𝑈4]                                                   (13) 

where: 

               𝑈1 = 𝐾𝑓(𝛺1
2 + 𝛺2

2 + 𝛺3
2 + 𝛺4

2 )                                             (14)

𝑈2 = 𝐾𝑓(− 𝛺1
2 + 𝛺2

2 + 𝛺3
2 − 𝛺4

2                                           (15)

𝑈3 = 𝐾𝑓( 𝛺1
2 − 𝛺2

2  + 𝛺3
2  − 𝛺4

2)                                           (16)

𝑈4 = 𝐾𝑀(𝛺1
2  + 𝛺2

2 − 𝛺3
2 − 𝛺4

2 )                                           (17)

 

 𝑈1: It is responsible for the altitude and its rate of change (𝑧, 𝑧̇). 

 𝑈2: It is responsible for the roll rotation and its rate of change (𝜙, 𝜙̇). 

 𝑈3: It is responsible for the pitch rotation and its rate of change (θ,θ̇). 

𝑈4: It is responsible for the yaw rotation and its rate of change (ψ, ψ̇). 

Using  (14) to (17) and replace them into the Rotational and Translational subsystems (5) and (10), 

respectively. 

The final mathematical model, which defines the position of the quadrotor in space and its angular 

and linear velocities, will be as follows:  

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝒙̇𝟏 = 𝝓̇ = 𝒙𝟐
𝒙̇𝟐 = 𝝓̈ = 𝒙𝟒𝒙𝟔𝒂𝟏 + 𝒃𝟏𝑼𝟐
𝒙̇𝟑 = 𝜽̇  = 𝒙𝟒
𝒙̇𝟒 = 𝜽̈ = 𝒙𝟐𝒙𝟔𝒂𝟐 + 𝒃𝟐𝑼𝟑
𝒙̇𝟓 = 𝝍̇ = 𝒙𝟔
𝒙̇𝟔 = 𝝍̈ = 𝒙𝟐𝒙𝟒𝒂𝟑 + 𝒃𝟑𝑼𝟒
𝒙̇𝟕 = 𝒙̇ = 𝒙𝟖

𝒙̇𝟖 = 𝒙̈ =
𝑼𝟏
𝒎
(𝐜𝐨𝐬 𝒙𝟏 𝐬𝐢𝐧 𝒙𝟑 𝐜𝐨𝐬 𝒙𝟓 + 𝐬𝐢𝐧 𝒙𝟏𝐬𝐢𝐧 𝒙𝟓)

𝒙̇𝟗 = 𝒚̇ = 𝒙𝟏𝟎

𝒙̇𝟏𝟎 = 𝒚̈ =
𝑼𝟏
𝒎
(𝐜𝐨𝐬 𝒙𝟏 𝐬𝐢𝐧𝒙𝟑 𝐬𝐢𝐧 𝒙𝟓 − 𝐬𝐢𝐧 𝒙𝟏 𝐜𝐨𝐬 𝒙𝟓)

𝒙̇𝟏𝟏 = 𝒛̇ = 𝒙𝟏𝟐

𝒙̇𝟏𝟐 = 𝒛̈ = −𝒈+
𝑼𝟏
𝒎
𝐜𝐨𝐬 (𝒙𝟏)𝐜𝐨𝐬 (𝒙𝟑)

                                     (𝟏𝟖) 

Where:  

𝑎1 =
𝐼𝑦𝑦 − 𝐼𝑧𝑧

𝐼𝑥𝑥
   ;    𝑎2 =

𝐼𝑧𝑧 − 𝐼𝑥𝑥
𝐼𝑦𝑦

  ;    𝑎3 =
𝐼𝑥𝑥 − 𝐼𝑦𝑦

𝐼𝑧𝑧
 

 𝑏1 =
𝑙

𝐼𝑥𝑥
             ;      𝑏2 =

𝑙

𝐼𝑦𝑦
          ;  𝑏3 =

1

𝐼𝑧𝑧
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Since the quadrotor is rotating around its hover point, the roll and pitch angles, represented by the 

values of 𝜙 and 𝜃, are small enough to support the hypotheses that: 𝑐𝑜𝑠(𝜙)  = 𝑐𝑜𝑠(𝜃)  = 1 and 

𝑠𝑖𝑛(𝜙) =  𝜙, and 𝑠𝑖𝑛(𝜃) =  𝜃. Thus: 

{
𝑥̈ = (𝜃 cos𝜓 + 𝜙 sin𝜓)

𝑈1
𝑚

𝑦̈ = (𝜃 sin𝜓 − 𝜙 cos𝜓)
𝑈1
𝑚

                                             (19) 

Hence, the angles 𝜙𝑑 and 𝜃𝑑 can be obtained from the following matrix form: 

                    [
𝜃𝑑
𝜙𝑑
] =

𝑚

𝑈1
[
𝑐𝑜𝑠(𝜓𝑑)         sin (𝜓𝑑)

𝑠𝑖𝑛(𝜓𝑑)     − cos (𝜓𝑑)
] [
𝑥̈
𝑦̈
]                                              (20) 

[
𝑥̈
𝑦̈
] =  

𝑈1
𝑚
[
𝑈x
𝑈y
]                                                                      (21) 

The vector in (21) represents a virtual input control from which we calculate the desired roll and 

pitch angles. In order to simplify the design approach, in this work the desired yaw angle 𝜓𝑑 is 

considered to be equal to zero. Therefore, by replacing (21) in (20) and putting  𝜓𝑑 = 0, the final 

equation will be as follows: 

{
𝜃𝑑 = 𝑈x
𝜙𝑑 = −𝑈y

                                                                     (22) 

3. Methodology 

Precise control methods are needed for the efficient and safe navigation of unmanned aerial vehicles 

(UAVs). Fuzzy logic control works with approximate or uncertain information, in contrast to standard 

control techniques that depend on exact mathematical models and crisp values. This makes it especially 

well-suited and effective for systems with ill-defined or unknown properties [8]. 

In this work, the Adaptive Fuzzy PID (AFPID) controller is presented as the main method, combining 

the principles of two baseline approaches: classical PID and Fuzzy PID (FPID) to enhance flexibility, 

robustness, and overall tracking performance.  

3.1 Baseline Controllers (PID & Fuzzy PID) 

As baseline controllers for UAV path tracking, we consider the classical PID controller and a Fuzzy-

PID (FPID) regulator. These serve as fundamental methods and points of comparison before 

introducing the main approach, the Adaptive Fuzzy PID (AFPID) controller. 

PID controllers are widely used in robotics applications, including path trajectory tracking. The key 

advantages of using PID controllers for these tasks are their ability to continuously minimize the error 

between the desired path/trajectory and the robot's actual position and orientation.  
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The PID controller can be presented as a mathematical equation given by: 

             𝑢(𝑡) = 𝐾𝑝𝑒 + 𝐾𝑖∫  
𝑡

0

𝑒  𝑑𝑡 + 𝐾𝑑
𝑑

𝑑𝑡
𝑒                                      (23) 

𝐾𝑃, 𝐾𝐷 and 𝐾𝐼 are the proportional, derivative and integral gains, respectively. However, in this work 

it required manual tuning of the gains by trial and error to achieve acceptable tracking performance. 

The Fuzzy PID (FPID) controller improves upon the classical PID by using a Mamdani fuzzy inference 

system (FIS) [9,10] to regulate the control action, which reduces the need for constant manual 

adjustment. figure 2 illustrates the key components of a fuzzy logic system [11]. 

 

 

The FPID controller can be presented as a mathematical equation given by: 

𝑢(𝑡) = 𝐾𝑝𝑒 + 𝐾𝑖∫  
𝑡

0

𝑒 𝑑𝑡 + 𝐾𝑑
𝑑

𝑑𝑡
𝑒 + 𝐹𝐼𝑆(𝑒, 𝑑𝑒)                                     (24) 

Where FIS is the Mamdani fuzzy inference output. In MATLAB, this term is obtained using evalfis 

instruction. Nevertheless, the FPID still operates with fixed PID gains and its performance depends on 

the design of the fuzzy rule base and membership functions, so it cannot adjust parameters in real time. 

3.2 Adaptive Fuzzy PID control (AFPID) 

Adaptive control is a method used to allow the real-time system to self-correct its configuration to 

handle any external issue. As the name suggests, the Adaptive Fuzzy PID methodology combines both 

PID control methods with adaptive fuzzy logic [12]. 

The main objective is to tune the gains of the PID controller (proportional, derivative and integral) 

using fuzzy logic, allowing the system to adapt to any changes or issues that could occur. The fuzzy 

logic controller uses the error and rate of change of error to adaptably regulate the proportional 𝐾𝑝, 

integral 𝐾𝐼, and derivative 𝐾𝐷 gain as illustrated in figure 3 [13]. 

Figure 2. Block diagram of Fuzzy logic controller system 
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For the control of UAV. figure 4 shows the design of the system controllers and the below sub-sections 

describe the work of each controller. 

 

• Altitude Controller 

The feedback signal from the quadrotor dynamics subsystem will be compared with the desired z-

position and this error signal 𝑒𝑧 will be input to the altitude controller.  

𝑈1(𝑘) = 𝐾𝑃𝑧𝐹𝐼𝐶𝑒𝑧(𝑘) + 𝐾𝐷𝑧𝐹𝐼𝐶[𝑒𝑧(𝑘) − 𝑒𝑧(𝑘 − 1)] + 𝐾𝐼𝑧𝐹𝐼𝐶 [∑  

𝑘

𝑖=0

𝑒𝑧(𝑖)]                                             (25)  

+ 𝑒𝑣𝑎𝑙𝑓𝑖𝑠( 𝑈𝑧𝐹𝐼𝑆 , [ 𝑒𝑧(𝑘), 𝑒𝑧(𝑘) − 𝑒𝑧(𝑘 − 1)])  

Where 𝑈𝑧𝐹𝐼𝑆  is the fuzzy inference system that contains two inputs: error of the altitude "𝒛" and its 

derivative and provides the output value. 

• Position Controller 

The quadrotor subsystem provides feedback on 𝑥 and 𝑦 positions. When these positions are not in line 

with the desired positions, an error signal is sent to the position controller, which modifies the error to 

Figure 3. The design of Adaptive Fuzzy PID 

Figure 4. Block diagram of all system controllers. 
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ensure that the quadrotor is moving in the correct direction.  The outputs of 𝑥 and 𝑦 position controllers 

are 𝑈x and 𝑈y, respectively. 

𝑈𝑥(𝑘) = 𝐾𝑃𝑥𝐹𝐼𝐶𝑒𝑥(𝑘) + 𝐾𝐷𝑥𝐹𝐼𝐶[𝑒𝑥(𝑘) − 𝑒𝑥(𝑘 − 1)] + 𝐾𝐼𝑥𝐹𝐼𝐶[∑  𝑘
𝑖=0 𝑒𝑥(𝑖)] + 𝑒𝑣𝑎𝑙𝑓𝑖𝑠( 𝑈𝑥𝐹𝐼𝑆, [ 𝑒𝑥(𝑘), 𝑒𝑥(𝑘) −

𝑒𝑥(𝑘 − 1)])          (26)       

𝑈𝑥𝐹𝐼𝑆 is the fuzzy inference system that contains two inputs: error of "x" and its derivative and provides 

the output value.                              

𝑈𝑦(𝑘) = 𝐾𝑃𝑦𝐹𝐼𝐶𝑒𝑦(𝑘) + 𝐾𝐷𝑦𝐹𝐼𝐶[𝑒𝑦(𝑘) − 𝑒𝑦(𝑘 − 1)] + 𝐾𝐼𝑦𝐹𝐼𝐶[∑  𝑘
𝑖=0 𝑒𝑦(𝑖)] + 𝑒𝑣𝑎𝑙𝑓𝑖𝑠( 𝑈𝑦𝐹𝐼𝑆, [ 𝑒𝑦(𝑘), 𝑒𝑦(𝑘) −

𝑒𝑦(𝑘 − 1)])                                           (27) 

𝑈𝑦𝐹𝐼𝑆  is the fuzzy inference system that contains two inputs: error of "y" and its derivative and 

provides the output value. 

• Attitude Controllers 

The attitude controller receives the roll and pitch angles as feedback from the dynamic subsystem, 

which compares to the desired roll and pitch, coming from the position controller. The roll and pitch 

controller are as follows: 

𝑈2(𝑘) = 𝐾𝑃𝜙𝐹𝐼𝐶𝑒𝜙(𝑘) + 𝐾𝐷𝜙𝐹𝐼𝐶[𝑒𝜙(𝑘) − 𝑒𝜙(𝑘 − 1)] + 𝐾𝐼𝜙𝐹𝐼𝐶[∑  𝑘
𝑖=0 𝑒𝜙(𝑖)] + 𝑒𝑣𝑎𝑙𝑓𝑖𝑠( 𝑈2𝐹𝐼𝑆, [ 𝑒𝜙(𝑘), 𝑒𝜙(𝑘 −

𝑒𝜙(𝑘 − 1)])                                      (28) 

𝑈2𝐹𝐼𝑆   is the fuzzy inference system that contains two inputs: error of "roll" and its derivative and 

provides the output value. 

𝑈3(𝑘) = 𝐾𝑃𝜃𝐹𝐼𝐶𝑒𝜃(𝑘) + 𝐾𝐷𝜃𝐹𝐼𝐶[𝑒𝜃(𝑘) − 𝑒𝜃(𝑘 − 1)] + 𝐾𝐼𝜃𝐹𝐼𝐶[∑  𝑘
𝑖=0 𝑒𝜃(𝑖)] + 𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑈3𝐹𝐼𝑆 , [ 𝑒𝜃(𝑘), 𝑒𝜃(𝑘) −

𝑒𝜃(𝑘 − 1)])                                       (29) 

𝑈3𝐹𝐼𝑆  is the fuzzy inference system that contains two inputs: error of "pitch" and its derivative 

and provides the output value. 

• Yaw controller 

The control input for the yaw angle is defined by this equation: 

𝑈4(𝑘) = 𝐾𝑃𝜓𝑒𝜓(𝑘) + 𝐾𝐷𝜓[𝑒𝜓(𝑘) − 𝑒𝜓(𝑘 − 1)] + 𝐾𝐼𝜓 [∑  

𝑘

𝑖=0

𝑒𝜓(𝑖)]

+ 𝑒𝑣𝑎𝑙𝑓𝑖𝑠(𝑈4𝐹𝐼𝑆 , [ 𝑒𝜓(𝑘), 𝑒𝜓(𝑘) − 𝑒𝜓(𝑘 − 1)])                                                                                       (30) 

𝑈4𝐹𝐼𝑆  is the fuzzy inference system that contains two inputs: error of "yaw" and its derivative and 

provides the output value. 

In the previous control inputs, e(𝑘) represents the error between the z-reference and z-

position   e(𝑘) = 𝑟𝑒𝑓 (𝑘) − pos(𝑘), 𝑈𝐹𝐼𝑆  is the fuzzy inference system that contains two inputs: error 

and its derivative and provides the output value and  𝐾𝑃𝐹𝐼𝐶 , 𝐾𝐷𝐹𝐼𝐶 , 𝐾𝐼𝐹𝐼𝐶  are the adaptable outputs gains 

(proportional, derivative and integral) of the PID controller. 
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4. Simulation Setup 

The simulation is done utilizing Matlab. The PID controller was designed based on the equations (25) 

to (29). The quadrotor is simulated using the model described in the second section and the parameters 

of the model are listed in table 1 [14]. 

Table 1. The parameters of quadrotor model 

 

 

 

 

 

 

 

 

 

In the first time, the values of PID parameters are manually tuned through trial-and-error; by taking 

values and see if they satisfy the desired result with minimizing the error. 

In fuzzy system inference, Three linguistic values: negative  

(N), zero (Z), and positive (P) are used for two inputs (error and rate of error) and one output with five 

linguistic values: great negative (GN), negative (N), zero (Z), positive (P) and great positive (GP). So, 

after  accurate observation, rule base is defined as shown in table 2 [15]. 

 

Table 2. UAV controllers rule table. 

 

               de                                      

 e 

N Z P 

N GN N Z 

Z N Z P 

P Z P GP 

 

Mamdani-type Fuzzy inference system with triangular and trapezoidal membership functions is used 

in our simulation, where the input range for both error and error’s rate is defined from [-5, 5]. Whereas, 

there exist four controllers outputs for each Fuzzy logic system 𝑼𝟏, 𝑼𝟐, 𝑼𝟑 and 𝑼𝟒 with two virtual 

controllers 𝑼𝐱 and 𝑼𝐲; each one of them has its own output range: [-12, 12] for 𝑼𝟏, [-3.05, 3.05] for 

 𝑼𝟐 and 𝑼𝟑, [-0.06, 0.06] for  𝑼𝟒, and [-1, 1] for 𝑼𝐱 and 𝑼𝐲. 

Therefore, in order to see the performance of the AFPID controller compared to well-tuned PID and 

FPID, we will take example path of quadrotor in 3D environment, and compare them in terms of the 

settling time, the steady state error and the total Root Mean Square error (RMSe) defined by (30). 

 𝑅𝑀𝑆𝑒 = √
1

n
∑  n
𝑖=1   ((𝑒𝑥(i))² + (𝑒𝑦(i))² + (𝑒𝑧(i))²)                                       (30)

m 0.486(Kg) 

l 0.25(m) 

g 9.81(m/s²) 

𝐼𝑥 3.82 × 10−3(Kg ×𝑚²) 

𝐼𝑦 3.82 × 10−3(Kg ×𝑚²) 

𝐼𝑧 7.65 × 10−3(Kg ×𝑚²) 
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5. Results and Discussion 

In the result part, we got the outcomes of the Adaptive Fuzzy PID response concerning the Y position, 

X position, roll, pitch, yaw (considered as zero in this context), and altitude Z in figure 5. The control 

inputs results are shown in figure 6 and the final simulated 3D UAV path in figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5. Adaptive Fuzzy PID Response for the First Path: Y-X Positions, Roll, Pitch, Yaw, and Altitude Z 
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From figure 5, we can notice that the X and Y response, both have a small overshoot from 0s to 5s and 

from 0s to 8s, respectively. For the altitude-Z, roll and pitch response, we can see that the controller 

follows directly the desired path with no overshoot. 

Figure 6.  Control inputs Adaptive Fuzzy PID response. 

Figure 7. Adaptive Fuzzy PID Control Simulation of a 3D UAV's Trajectory. 
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Concerning the controller’s outputs in figure 6, 𝑼𝟏  has a fluctuation due to the sudden changes in the 

altitude Z. For 𝑼𝟐,𝑼𝟑 and 𝑼𝟒 , we can notice that they were unstable a bit in the beginning but after 

that they maintain in the value of ‘0’. 

Table 3 shows the performance of three controller methods: PID, FPID, and AFPID, across three 

positions X, Y, and Z. All controllers successfully drive the UAV to the desired setpoint without 

steady-state error. The comparison of settling times and RMSe shows that AFPID achieves slightly 

better performance than both FPID and PID. 

 

Table 3. PID, FPID and AFPID Response for Trajectory Tracking: Settling Time and RMSe. 

 

Controller Type Settling Time 

(X-pos) 

Settling Time 

(Y-pos) 

Settling Time 

(Z-pos) 

RMSe 

PID 5s 6.2s 3.5s 1.0185 

FPID 4.5s 5.75s 3.5s 0.9064 

AFPID 3.5s 5.7s 3s 0.9063 

 

All simulated plots demonstrate convergence to the reference one without any steady state error in all 

three control types. 

The closeness of the results could be explained by the well-tuned parameters of the PID. The manual 

tuning method is an easy way for PID controllers to obtain a reasonable result. However, it may take 

a long time to obtain the gains that generate a reasonable result, and it is difficult to determine if the 

final settings are optimal. Due to their little knowledge of the process plant, PID controllers are unable 

to adjust themselves automatically when the system faces a certain change. Hence, other approaches 

such us the Fuzzy logic technique, could be integrated into the PID controller to ensure the output is 

obtained as desired and the parameters are tuned automatically when changes are applied to the system. 

To obtain a better comparison of the control methods' adaptability in the presence of Gaussian 

disturbance over time from 10 seconds until 20 seconds. The effects of the disturbances are shown in 

figure 8. AFPID was the best, followed by FPID, with PID controller performing the least effectively. 
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In overall, the Adaptive fuzzy PID, fuzzy PID and PID controllers proved that they are adapted to the 

quadrotor when flying. However, the adaptive fuzzy PID controller includes the adaptive mechanism 

that continuously adjusts the parameters of the controller in real-time. Instead of tuning the parameters 

manually, this is the main difference that makes AFPID better than FPID and PID. 

6. Conclusion 

In this paper, we investigated the Adaptive Fuzzy PID (AFPID) control strategy for quadrotor UAVs, 

with classical PID and fuzzy PID (FPID) used as baseline controllers. The results showed that all 

controllers achieved stable trajectory tracking without steady-state error and performed approximately 

the same due to well-tuned PID parameters. However, AFPID demonstrated superior performance, 

providing faster settling times and greater robustness against disturbances thanks to its ability to adjust 

parameters in real time. These improvements confirm the effectiveness of integrating adaptiveness 

with fuzzy reasoning in UAV control. For future work, we will focus on extending the AFPID approach 

to more complex flight scenarios and validating its performance in real-world experiments. 
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