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Abstract 

Interval-valued data techniques are widely utilized in fault detection to enhance robustness against 

uncertainty. Among these, Vertices Principal Component Analysis (VPCA) is one of the most 

commonly applied methods. Constructing a VPCA model involves transforming the interval data 

matrix into a vertices matrix. This study introduces a novel data-driven approach for fault detection in 

uncertain nonlinear processes called Kernel VPCA (K-VPCA), which extends the VPCA method to 

handle nonlinear interval data. Specifically, the data are mapped into a high-dimensional kernel feature 

space before applying VPCA, allowing nonlinear relationships to be effectively modeled. The K-

VPCA approach maintains robustness against false alarms without compromising fault detection 

performance. The proposed method is validated using data from a cement rotary kiln, confirming its 

effectiveness in fault detection.  
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1. Introduction 

Principal Component Analysis (PCA) is a widely utilized data-driven method for monitoring and 

diagnosing complex systems [1]–[3]. Despite its success, PCA’s performance in monitoring industrial 

systems with nonlinear dynamics is often limited due to its inherently linear nature, which prevents it 

from effectively modeling the nonlinear relationships present in such data [4], [5]. To overcome these 

limitations, various nonlinear extensions of PCA have been developed, with Kernel Principal 

Component Analysis (KPCA) being one of the most prominent approaches [6]. Originally introduced 

by Scholkopf ¨ [7], KPCA uses a nonlinear transformation to map the data into a higher-dimensional 

feature space, where linear PCA is then applied. This allows KPCA to capture the nonlinear 

characteristics of real-world processes, making it a robust tool for fault detection and diagnosis (FDD) 

[8]. As a result, KPCA has gained considerable attention for its ability to monitor and analyze nonlinear 

systems with higher precision [9]. However, a key limitation of KPCA lies in its assumption that sensor 

data is accurate and free from uncertainty, an assumption often violated in real-world applications 

where data is influenced by noise and approximations [10]. To overcome the challenges posed by 

uncertainty and nonlinearity in fault detection, researchers have developed algorithms tailored for 

interval-valued data [8], [11]. Examples of such methods include PCA vertices (VPCA), center PCA 

(CPCA), midpoint-radii PCA (MRPCA), and complete information PCA (CIPCA) [12]. Although 

these approaches show promise, their effectiveness is largely constrained to linear systems, limiting 

their applicability to nonlinear processes [13]. To address this limitation, recent research has focused 

on combining interval analysis with techniques capable of handling nonlinear systems [11]. This study 

introduces a new method, kernel vertices Principal Component Analysis (K-VPCA), which extends 

the VPCA framework by incorporating a nonlinear mapping that transforms the data into a higher-

dimensional feature space. Within this space, interval-valued VPCA is applied, enabling K-VPCA to 

handle data uncertainties while effectively modeling nonlinear relationships. As a result, K-VPCA 

provides a robust and reliable solution for fault detection in complex, uncertain, and nonlinear 

processes. The effectiveness of the K-VPCA technique is validated using data from a rotary cement 

kiln, a complex industrial system characterized by significant non-linear behavior [14]. The results 

demonstrate that K-VPCA excels in minimizing false detections while maintaining high accuracy, 

without compromising detection speed or sensitivity to deviations. This establishes K-VPCA as a 

robust and dependable tool for fault detection in nonlinear systems, offering significant improvements 

over traditional PCA and other interval-based methods.  
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Additionally, the proposed method enhances fault detection reliability and provides a more 

comprehensive and precise diagnosis, contributing to improved process monitoring and control. 

The structure of the paper is organized as follows: Section 2 outlines the theoretical foundations 

of the VPCA method as an interval-valued approach for process monitoring. Section 3 introduces the 

proposed K-VPCA method. In Section 4, the interval-based control chart for Hotelling’s T2, the 

squared predictive error Q, and the combined index Φ statistics is presented. Section 5 describes the 

cement plant setup, the application of the proposed method, and the resulting findings. Finally, Section 

6 concludes with key remarks and future directions. 

 

2. VERTICES PRINCIPAL COMPONENT ANALYSIS (VPCA)  

VPCA is a two-step analysis that begins with numerical coding of a box’s vertices and ends with a 

standard PCA on the coded data [13], [15]. Each observation in Rm can be represented as a 

hyperrectangle with 2m vertices and the total number of vertices is n×2m. Therefore, from the interval 

data: 

[𝑋] =  

(

 
 
 
 
 [

𝑥1(1) ⋯ 𝑥𝑚(1)

⋮ ⋱ ⋮

𝑥1(1) ⋯ 𝑥𝑚(1)

]

⋮

[

𝑥1(𝑛) ⋯ 𝑥𝑚(𝑛)

⋮ ⋱ ⋮

𝑥1(𝑛) ⋯ 𝑥𝑚(𝑛)

]

)

 
 
 
 
 

                                                                        (1) 

 

VPCA does not directly summarize the interval-valued data matrix X, it is replaced by a single-

valued data matrix obtained as follows. Each interval-valued row is transformed into the numerical 

matrix 𝑋𝑖 as follows: 

[𝑋] =  

(

 
 
 
 
 

[
 
 
 
 
 
 
 
𝑥1(𝑘) 𝑥2(𝑘) 𝑥3(𝑘)

𝑥1(𝑘) 𝑥2(𝑘) 𝑥3(𝑘)

𝑥1(𝑘) 𝑥2(𝑘) 𝑥3(𝑘)

⋯ 𝑥𝑚−1(𝑘) 𝑥𝑚(𝑘)

⋯ 𝑥𝑚−1(𝑘) 𝑥𝑚(𝑘)

⋯ 𝑥𝑚−1(𝑘) 𝑥𝑚(𝑘)

𝑥1(𝑘) 𝑥2(𝑘) 𝑥3(𝑘)

⋮ ⋮ ⋮
𝑥1(𝑘) 𝑥2(𝑘) 𝑥3(𝑘)

⋯ 𝑥𝑚−1(𝑘) 𝑥𝑚(𝑘)

⋯ ⋮ ⋮
⋯ 𝑥𝑚−1(𝑘) 𝑥𝑚(𝑘)]

 
 
 
 
 
 
 

)

 
 
 
 
 

                     (2) 
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By stacking below, each other all the matrices Xi′s, i = 1, ..., n, we get the new data matrix 𝑋𝑉𝑃𝐶𝐴 with 

𝑛𝑥2𝑚 rows and m columns: 

𝑋𝑉𝑃𝐶𝐴 = (

𝑋1
𝑋2
⋮

𝑋𝑚

)                                          (3) 

VPCA entails performing PCA on 3. As with standard PCA, it is best to pre-process the data to avoid 

unwanted differences between variables. The matrix in 3 can be pre-processed in the same way that 

the standard single-valued case is. The application of PCA to the matrix 𝑋𝑉𝑃𝐶𝐴 will give  

𝑋̂𝑉𝑃𝐶𝐴= 𝑇𝑉𝑃𝐶𝐴 𝑃𝑇 , and if B is chosen to be column-wise orthonormal, we have 𝑋𝑉𝑃𝐶𝐴 = 𝑇𝑉𝑃𝐶𝐴 𝑃𝑇 . To 

facilitate the interpretation of the solution, for each observation unit, for each component, the segment 

containing all component scores for vertices associated with this observation unit. Specifically, 

with respect to the 𝑘𝑡ℎ component, k = 1, ..., p, if 𝑛𝑖 denotes the set of all the vertices for the 𝑖𝑡ℎ 

observation unit, i = 1, ..., n. The dimension of matrix 𝑋𝑉𝑃𝐶𝐴 is huge which will make the PCA of a 

such matrix practically impossible. This computational problem can be overcome by considering a 

special property of PCA. Specifically, it is well known that the columns of the component loadings 

matrix are the eigenvectors obtained from the eigen-decomposition of the cross-products matrix. Note 

that the eigenvectors are arranged in such a way that the first ones are associated with the highest 

eigenvalues [16]. Dealing with the cross products matrix Σ𝑉= 𝑋𝑉𝑃𝐶𝐴
𝑇 𝑋𝑉𝑃𝐶𝐴, after simplification 

the covariance matrix Σ𝑉 can be written as in equ. 4. 

 

Σ𝑉=

2𝑚−2

(

 
 

2∑ (𝑥1
2
(𝑘) + 𝑥1

2(𝑘))𝑛
𝑘=1 ∑ ((𝑥1(𝑘) + 𝑥1(𝑘))(𝑥2(𝑘) + 𝑥2(𝑘)))𝑛

𝑘=1 …

∑ ((𝑥2(𝑘) + 𝑥2(𝑘))(𝑥1(𝑘) + 𝑥1(𝑘)))𝑛
𝑘=1 2∑ (𝑥2

2
(𝑘) + 𝑥2

2(𝑘))𝑛
𝑘=1 …

⋮ ⋮ ⋱

∑ ((𝑥1(𝑘) + 𝑥1(𝑘))(𝑥𝑚(𝑘) + 𝑥𝑚(𝑘)))𝑛
𝑘=1

∑ ((𝑥2(𝑘) + 𝑥2(𝑘))(𝑥𝑚(𝑘) + 𝑥𝑚(𝑘)))𝑛
𝑘=1

⋮

∑ ((𝑥𝑚(𝑘) + 𝑥𝑚(𝑘))(𝑥1(𝑘) + 𝑥1(𝑘)))𝑛
𝑘=1 ∑ ((𝑥𝑚(𝑘) + 𝑥𝑚(𝑘))(𝑥2(𝑘) + 𝑥2(𝑘)))𝑛

𝑘=1 … 2∑ (𝑥𝑚
2
(𝑘) + 𝑥𝑚

2 (𝑘))𝑛
𝑘=1 )

 
 

(4) 

 

Then, the components can be extracted by performing the eigen-decomposition on Σ𝑉 , indeed the 

obtained loading matrix P is column-wise orthonormal. However, this would require that we 

nevertheless use the huge matrix 𝑋𝑉𝑃𝐶𝐴, we use a shortcut to define what we may call the positive and 

negative component loadings matrices, respectively, 𝑃+and 𝑃− with generic elements  

 

𝑝𝑗𝑘
+ = {

𝑝𝑗𝑘 , 𝑖𝑓  𝑝𝑗𝑘 ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (5) 
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𝑝𝑗𝑘
− = {

𝑝𝑗𝑘 , 𝑖𝑓  𝑝𝑗𝑘 ≤ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (6). 

 

Where 𝑝𝑗𝑘 gives the loading of variable j on component k. In matrix notation, the bounds of the 

component scores matrix are given by: 

 

     {
𝑡(𝑘) =  𝑋(𝑘)𝑃− + 𝑋(𝑘)𝑃+

𝑡(𝑘) =   𝑋(𝑘)𝑃+ + 𝑋(𝑘)𝑃−
                 (7) 

 

Thus, it can be seen that score matrices were computed without explicitly having to compute all the 

component scores for all the vertices. It follows that this computational approach to VPCA finds the 

same component loadings and the same segments for the observation units, as the original 

computational approach to VPCA. We only lose the component scores of all individual vertices, but 

not of the segments that enclose them. Estimates of interval measurements are also computed as 

mentioned before 

 

𝑋̂𝑉𝑃𝐶𝐴=  𝑇𝑉𝑃𝐶𝐴 𝑃𝑇                           (8) 

 

The estimated interval-valued measurements for the principal components are then computed as: 

 

{
𝑥̂𝑗(𝑘) =  𝑡(𝑘)𝑃−

𝑥̂𝑗(𝑘) =   𝑡(𝑘)𝑃+
                          (9) 

 

3. THE PROPOSED METHOD KERNEL VERTICES PCA (K-VPCA) 

Let X be a training data matrix of n samples (or observations) and m variables (or features). That is X 

∈ 𝑅𝑛𝑥𝑚,  where 

X = [𝑋1, 𝑋2, . . . , 𝑋𝑛]𝑇                       (10). 

 

These data points are mapped to a higher-dimensional feature space 

 

Φ :  𝑋𝑖 ∈ ℛ𝑚 → Φ (𝑋𝑖) =  Φ𝑖 ∈ ℱ            (11) 
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Note that the feature space F has an arbitrarily large, possibly infinite, dimensionality equal to ℋ [7]. 

An essential property of the feature space is the dot product of two vectors, Φ (𝑥𝑖)  and Φ (𝑥𝑖),  

i, j = 1, . . . n. It is calculated as follows: 

 

𝜙(𝑥𝑖)
𝑇.ϕ(𝑥𝑗) = k(𝑥𝑖, 𝑥𝐽)                     (12) 

 

where k is the kernel function. In the literature, several core functions have been presented, the most 

common of which is the radial basis function (RBF), which is provided by the following: 

 

k(𝑥𝑖, 𝑥𝐽) = exp[
−|𝑥𝑖−𝑥𝐽|

2𝜎2
]                     (13) 

 

where 𝜎 is the width of a Gaussian function that controls the flexibility of the kernel. A common choice 

for 𝜎 is the average minimum distance (d) between two points in the training data set. 

The suggested method’s fundamental idea is to map data into a feature space via a nonlinear mapping, 

and then execute a linear interval-valued VPCA in feature space. The flow chart of Fig. 1 explains the 

procedure of the work. 

 

 

Figure 1.  K-VPCA flowchart. 
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4.  FAULT DETECTION USING K-VPCA METHOD 

In this part, we present numerous fault detection indices based on K-VPCA for interval-valued data 

approaches to obtain the highest degree of robustness against uncertainty. In multivariate fault 

detection using a KPCA model, many statistics that quantify variances in distinct projection subspaces 

are utilized. The most often used fault indicators are 𝑇2 and 𝑆𝑃𝐸 (Q-statistic). 

 

4.1. Interval-valued indices 

The interval [𝑇2] statistic is computed for the first interval principal components using a combination 

of interval eigenvalues and interval principal components as follows: 

 

{
𝑇2(𝑘) =  𝑡̂𝑇(𝑘)∆𝑙

−1𝑡̂(𝑘)

𝑇
2
(𝑘) =  𝑡̂

𝑇
(𝑘)∆𝑙

−1𝑡̂(𝑘)
                     (14) 

 

For the interval-valued case, the Q statistic is computed as in the classical case, providing an interval 

[SPE] ([Q]) with upper and lower limits that correspond to the upper and lower bounds of the 

estimated residuals, as follows: 

 

{
𝑄 = ‖𝑒(𝑘)‖

2
= 𝑒𝑇(𝑘)𝑒(𝑘) 

𝑄 = ‖𝑒(𝑘)‖2 = 𝑒
𝑇
(𝑘)𝑒(𝑘)

                     (15) 

 

Given that 𝑒(k) = [𝑒1 (k), ..., 𝑒𝑚 (k)],  𝑒(k) = [𝑒1(k), ..., 𝑒𝑚 (k)]. 

 

4.2 The interval fault detection index 

The interval fault detection index was developed owing to the ambiguity in fault detection decisions 

due to the interval structure of statistics presented above. When each bound draws a different 

conclusion about the appearance of faults [13]. The interval fault detection index presented here is 

denoted by the interval square prediction error (IQ), which is defined as: 

 

IQ(k) = ||[𝑒(𝑘)]||2 =    ∑ ‖[𝑒𝑗(𝑘)]‖
2𝑚

𝑗=1                      (16) 
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Where  

||[𝑒(𝑘)]||2 = 𝑒𝑗
2(k) + 𝑒𝑗(k)𝑒𝑗 (k) + 𝑒𝑗

2
(k))     (17). 

 

Similarly, the interval Hotelling 𝑇2 statistic (I𝑇2) is computed as follows: 

 

I𝑇2 (k) = ‖
[𝑡̂(𝑘)]

[∆𝑙]
1
2

‖                                                     (18) 

 

The combined index, Φ, is evaluated as a combination of the principal subspace indicator, 𝑇2, and 

the residual subspace indicator, SPE (Q). For interval data, the interval Φ depends on both 𝑇2 and 

[Q] as described by the following equation: 

 

{

𝜙 =
𝑇2

𝜏𝛼
2 + 

𝑄

𝛿𝛼
2

𝜙 = 
𝑇

2

𝜏𝛼
2 + 

𝑄

𝛿𝛼
2

                                                  (19) 

The new interval statistic IΦ also based on the combined interval fault detection indices 𝐼𝑇2 & 

𝐼𝑄 could be calculated as follows: 

 

𝐼Φ =  
𝐼𝑇2(𝑘)

𝜏𝛼
2 +

𝐼𝑄(𝑘)

𝛿𝛼
2                                         (20) 

 

where 𝜏𝛼
2 and 𝛿𝛼

2 are the threshold of 𝐼𝑇2 (k) and 𝐼𝑄 (k) respectively. 

 

5. APPLICATION ON CEMENT ROTARY KILN 

This section provides an overview of the cement plant process and describes the signals employed 

for fault detection. Additionally, it details the fault detection methodology by specifying the types 

and sizes of datasets collected for the development and evaluation of the monitoring methods’ 

performance 

5.1 Process description 

The rotary kiln plays a pivotal role in cement production and comprises several key components, 

including the head-sealing device, tail-sealing device, and hood. During normal operation, 
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the kiln is driven by a primary motor through a reducer, which powers a large gear ring attached to the 

cylinder near the kiln tail via a spring plate. Raw materials are fed into the kiln from the top and 

transported through the rotating chamber to the opposite end, where they undergo high-temperature 

decomposition. In indirect-fired rotary kilns, heat is supplied by an external burner, whereas in 

indirect-fired kilns, the heat source is located within the chamber, maintaining the integrity of the raw 

materials. The rotation speed and temperature of the cylinder are adjusted to accommodate different 

materials and operational requirements. After calcination, the clinker undergoes initial cooling within 

the chamber before being transferred to the cooler for further cooling. Detailed descriptions of the 

various process variables can be found in [4]. 

5.2 Application of the Proposed Monitoring Scheme 

The proposed K-VPCA technique is applied to monitor industrial cement production in this part. 44 

sensors are used to monitor the process. These variables were picked from a pool of 55 to build a strong 

monitoring strategy and evaluate its detection capacity based on data from process computers in real 

time. Because standard PCA and its interval variants are already noise separation techniques, 

preprocessing or filtering the data is unnecessary.  

 

The software used in the simulation was MATLAB. The data utilized in this article are of two types: 

1) A healthy dataset which are divided into training (11000 samples), and testing (768 samples) data. 

2) A faulty dataset that contains an actual involuntary process fault. It consists of 2084 samples. 

The flowchart in fig 1 explains the steps that have been done. 

After transforming the interval data into single-valued data, the PCA model is constructed based on 

the Cumulative Percentage of Variance (CPV) rule. The performance of the proposed technique is 

evaluated using several metrics: 

• False Alarm Rate (FAR): This metric is calculated as: 

𝐹𝐴𝑅 = 100 ×
𝑁ℎ,𝑓

𝑁ℎ
%. 

where 𝑁ℎ,𝑓 represents the number of samples exceeding the threshold while the system is healthy, and 

𝑁ℎ is the total number of healthy samples. 

• Missed Detection Rate (MDR): This metric is calculated as: 

                                            𝑀𝐷𝑅 = 100 ×
𝑁𝑓,𝑓

𝑁𝑓
%. 
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where 𝑁𝑓,𝑓 is the number of samples below the threshold while the system is faulty, and 𝑁𝑓 is the 

total number of faulty samples. 

•  Fault Detection Time Delay (DTD): 

DTD = 𝑡𝑑 − 𝑡𝑜. 

DTD is the number of samples while the system is faulty before it exceeds its threshold, 𝑡𝑑   and 𝑡𝑜 are 

the detection time and occurrence time of a fault, respectively. 

 

Table 1 compares the False Alarm Rate (FAR) for 𝑇2,  Q and Φ statistics across PCA, VPCA, and K-

VPCA methods for training and testing datasets. In the training set, PCA exhibits a FAR of 10% for 

all metrics, whereas VPCA and K-VPCA consistently achieve a lower FAR of 5%, indicating greater 

reliability in handling training data. For the testing set, PCA shows significant variability, with a low 

FAR for 𝑇2, (5.07%) but much higher values for Q (18.7%) and Φ (12.5%), highlighting its sensitivity 

to uncertainty. In contrast, VPCA demonstrates consistent and reduced FAR values (𝑇2 = 6.07%, Q = 

6.00%, Φ = 6.04%), showcasing improved robustness. K-VPCA further enhances performance, 

achieving the lowest FAR across all metrics (𝑇2= 5.55%, Q = 6.00%, Φ = 5.33%), particularly 

reducing false alarms in Φ. Overall, the results establish K-VPCA as the most robust and reliable 

method for fault detection in uncertain nonlinear systems.  

 

Table 1. FAR % contributed by T 2, Q and Φ statistics, for the training and testing sets. 

Data Set  Training Set  Testing Set  

Statistics  𝑇2 Q Φ  𝑇2 Q Φ  

PCA [12]  10.0 10.0 10.0  5.07 18.7 12.5  

VPCA [12]  5.00 5.00 5.00  6.07 6.00 6.04  

K-VPCA  5.00 5.00 5.00  5.55 6.00 5.33  

 

5.2 Real process fault detection 

Table II presents the False Alarm Rate (FAR), Missed Detection Rate (MDR), and Detection Time 

Delay (DTD) for the faulty dataset based on three statistical indices (T 2, Q, and Φ) across PCA, 

VPCA, and K-VPCA methods. PCA shows a high FAR, particularly for Q (94.8%) and Φ (98.4%), 

with  𝑇2 also contributing significantly (30%), indicating frequent false alarms. Additionally, PCA has 

an MDR and DTD of zero across all indices, suggesting it fails to detect faults effectively. VPCA 
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reduces FAR substantially, with  𝑇2 and Φ achieving zero, but exhibits an MDR of 61.2% for Q and a 

high DTD for Q (115) and  𝑇2 (15), indicating delayed and missed fault detections in some cases. 

 

Table 2. FAR, MDR & DTD of the faulty dataset contributed by the three statistic indices. 

Data Set  FAR  MDR  DTD 

Statistics  𝑇2 Q Φ  𝑇2 Q Φ  𝑇2 Q Φ 

PCA [12]  30.0 94.8 98.4  0.00 0.00 0.00  0.00 0.00 0.00 

VPCA [12]  0.00 6.22 0.00  1.40 61.2 0.00  15.0 115 20.0 

K-VPCA  5.00 5.00 5.00  5.55 6.00 5.33  0.00 26.0 0.00 

 

K-VPCA achieves the best balance, with minimal FAR (Q = 0.00%), reduced MDR (Q = 2.14%), and 

significantly lower DTD compared to VPCA, particularly for Q (26). Overall, K-VPCA demonstrates 

superior fault detection performance with fewer false alarms, improved detection accuracy, and faster 

response times, making it the most robust method among the three. Concerning the data of the real 

fault, Fig. 2, shows the result of the proposed interval approach K-VPCA method where the first 450 

samples are healthy; the remaining ones are related to the real fault. 

 

Figure 2. 𝑻 𝟐, Q, and Φ monitoring results of the faulty process operation, using the proposed K-VPCA method. 
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4. Conclusion 

 

The interval nature of the projections ensures that approximation errors are eliminated during the fault 

identification and isolation process. This study introduces a novel data-driven approach for detecting 

faults in uncertain nonlinear processes. By incorporating sensor data and uncertainties through interval 

representation, interval-valued methods provide a robust strategy for fault detection and isolation 

(FDI). The objective was to evaluate the applicability and reliability of VPCA for 

fault identification in nonlinear systems, utilizing data from a cement rotary kiln. The results 

demonstrated the effectiveness of the proposed K-VPCA technique compared to interval VPCA and 

traditional PCA approaches. This research aims to establish an efficient interval diagnosis 

methodology that addresses the limitations of existing interval-based methods. 
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