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Abstract

Interval-valued data techniques are widely utilized in fault detection to enhance robustness against
uncertainty. Among these, Vertices Principal Component Analysis (VPCA) is one of the most
commonly applied methods. Constructing a VPCA model involves transforming the interval data
matrix into a vertices matrix. This study introduces a novel data-driven approach for fault detection in
uncertain nonlinear processes called Kernel VPCA (K-VPCA), which extends the VPCA method to
handle nonlinear interval data. Specifically, the data are mapped into a high-dimensional kernel feature
space before applying VPCA, allowing nonlinear relationships to be effectively modeled. The K-
VPCA approach maintains robustness against false alarms without compromising fault detection
performance. The proposed method is validated using data from a cement rotary kiln, confirming its

effectiveness in fault detection.
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1. Introduction

Principal Component Analysis (PCA) is a widely utilized data-driven method for monitoring and
diagnosing complex systems [1]-[3]. Despite its success, PCA’s performance in monitoring industrial

systems with nonlinear dynamics is often limited due to its inherently linear nature, which prevents it

from effectively modeling the nonlinear relationships present in such data [4], [5]. To overcome these
limitations, various nonlinear extensions of PCA have been developed, with Kernel Principal
Component Analysis (KPCA) being one of the most prominent approaches [6]. Originally introduced
by Scholkopf ” [7], KPCA uses a nonlinear transformation to map the data into a higher-dimensional

feature space, where linear PCA is then applied. This allows KPCA to capture the nonlinear

characteristics of real-world processes, making it a robust tool for fault detection and diagnosis (FDD)
[8]. As aresult, KPCA has gained considerable attention for its ability to monitor and analyze nonlinear
systems with higher precision [9]. However, a key limitation of KPCA lies in its assumption that sensor
data is accurate and free from uncertainty, an assumption often violated in real-world applications
where data is influenced by noise and approximations [10]. To overcome the challenges posed by
uncertainty and nonlinearity in fault detection, researchers have developed algorithms tailored for
interval-valued data [8], [11]. Examples of such methods include PCA vertices (VPCA), center PCA
(CPCA), midpoint-radii PCA (MRPCA), and complete information PCA (CIPCA) [12]. Although

these approaches show promise, their effectiveness is largely constrained to linear systems, limiting

their applicability to nonlinear processes [13]. To address this limitation, recent research has focused
on combining interval analysis with techniques capable of handling nonlinear systems [11]. This study
introduces a new method, kernel vertices Principal Component Analysis (K-VPCA), which extends
the VPCA framework by incorporating a nonlinear mapping that transforms the data into a higher-
dimensional feature space. Within this space, interval-valued VPCA is applied, enabling K-VPCA to
handle data uncertainties while effectively modeling nonlinear relationships. As a result, K-VPCA
provides a robust and reliable solution for fault detection in complex, uncertain, and nonlinear
processes. The effectiveness of the K-VPCA technique is validated using data from a rotary cement
kiln, a complex industrial system characterized by significant non-linear behavior [14]. The results
demonstrate that K-VPCA excels in minimizing false detections while maintaining high accuracy,
without compromising detection speed or sensitivity to deviations. This establishes K-VPCA as a
robust and dependable tool for fault detection in nonlinear systems, offering significant improvements

over traditional PCA and other interval-based methods.
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Additionally, the proposed method enhances fault detection reliability and provides a more

comprehensive and precise diagnosis, contributing to improved process monitoring and control.

The structure of the paper is organized as follows: Section 2 outlines the theoretical foundations
of the VPCA method as an interval-valued approach for process monitoring. Section 3 introduces the
proposed K-VPCA method. In Section 4, the interval-based control chart for Hotelling’s 72, the
squared predictive error O, and the combined index @ statistics is presented. Section 5 describes the
cement plant setup, the application of the proposed method, and the resulting findings. Finally, Section

6 concludes with key remarks and future directions.

2. VERTICES PRINCIPAL COMPONENT ANALYSIS (VPCA)

VPCA is a two-step analysis that begins with numerical coding of a box’s vertices and ends with a
standard PCA on the coded data [13], [15]. Each observation in Rm can be represented as a
hyperrectangle with 2m vertices and the total number of vertices is n x2m. Therefore, from the interval

data:
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VPCA does not directly summarize the interval-valued data matrix X, it is replaced by a single-
valued data matrix obtained as follows. Each interval-valued row is transformed into the numerical

matrix X; as follows:
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By stacking below, each other all the matrices Xi's, i = 1, ..., n, we get the new data matrix Xy pc4 with

nx2™ rows and m columns:

X1

X2

Xypca = | 3)

Xm
VPCA entails performing PCA on 3. As with standard PCA, it is best to pre-process the data to avoid
unwanted differences between variables. The matrix in 3 can be pre-processed in the same way that
the standard single-valued case is. The application of PCA to the matrix Xy pc4 Will give
Xvpca=Typca PT , and if B is chosen to be column-wise orthonormal, we have Xypcs = Typca PT . To
facilitate the interpretation of the solution, for each observation unit, for each component, the segment
containing all component scores for vertices associated with this observation unit. Specifically,
with respect to the k" component, k = 1, ..., p, if n; denotes the set of all the vertices for the it"
observation unit, i = 1, ..., n. The dimension of matrix Xy p¢,4 is huge which will make the PCA of a
such matrix practically impossible. This computational problem can be overcome by considering a
special property of PCA. Specifically, it is well known that the columns of the component loadings
matrix are the eigenvectors obtained from the eigen-decomposition of the cross-products matrix. Note
that the eigenvectors are arranged in such a way that the first ones are associated with the highest
eigenvalues [16]. Dealing with the cross products matrix = X{pc4Xypca, after simplification

the covariance matrix X, can be written as in equ. 4.

257 (B0 + 22(0) PR+ n)EHE) + B0 . SR (@ ) + x100)En() + 2 (K)))
() + ()@ () + x(k))) 255, (%500 + x2(k)) o Zi=1 (O (R) + 2 (k) (o () + xm (K)))
P (@n () + NG + 1(0)) TP (Enh) + XD + () .. 250, (R0 + 22 ()

Then, the components can be extracted by performing the eigen-decomposition on Xy, , indeed the
obtained loading matrix P is column-wise orthonormal. However, this would require that we
nevertheless use the huge matrix Xy p-4, we use a shortcut to define what we may call the positive and

negative component loadings matrices, respectively, PTand P~ with generic elements

v _ (Pjk If P20

= 5
Pjk { 0, otherwise ®)
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- {ij» if Dk =<0

= 6).
Pjt 0, otherwise ©)

Where pji gives the loading of variable j on component k. In matrix notation, the bounds of the

component scores matrix are given by:

{z(k) = X(k)P~ + X(k)P*
t(k) = X(k)P*+ X(k)P~

Thus, it can be seen that score matrices were computed without explicitly having to compute all the
component scores for all the vertices. It follows that this computational approach to VPCA finds the
same component loadings and the same segments for the observation units, as the original
computational approach to VPCA. We only lose the component scores of all individual vertices, but
not of the segments that enclose them. Estimates of interval measurements are also computed as

mentioned before

Xvpca= Typca PT 8

The estimated interval-valued measurements for the principal components are then computed as:

Xj(k) = t(k)P~
{ ‘)

%(k) = t(k)P*
3. THE PROPOSED METHOD KERNEL VERTICES PCA (K-VPCA)
Let X be a training data matrix of » samples (or observations) and m variables (or features). That is X
€ R™™  where
X:[Xl,Xz,...,Xn]T (10)

These data points are mapped to a higher-dimensional feature space

(2 Xi E:Rm—>(D(Xl): (Di eEF (11)
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Note that the feature space F has an arbitrarily large, possibly infinite, dimensionality equal to H [7].
An essential property of the feature space is the dot product of two vectors, ® (x;) and @ (x;),

1,j=1,...n.Itis calculated as follows:

d(x)T.P(x) = k(x;, x;) (12)

where k is the kernel function. In the literature, several core functions have been presented, the most

common of which is the radial basis function (RBF), which is provided by the following:

—|xi- x]|
202

k(x;, x) = exp[——~1 (13)

where o is the width of a Gaussian function that controls the flexibility of the kernel. A common choice
for o is the average minimum distance (d) between two points in the training data set.

The suggested method’s fundamental idea is to map data into a feature space via a nonlinear mapping,
and then execute a linear interval-valued VPCA in feature space. The flow chart of Fig. 1 explains the

procedure of the work.
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Figure 1. K-VPCA flowchart.
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4. FAULT DETECTION USING K-VPCA METHOD

In this part, we present numerous fault detection indices based on K-VPCA for interval-valued data
approaches to obtain the highest degree of robustness against uncertainty. In multivariate fault
detection using a KPCA model, many statistics that quantify variances in distinct projection subspaces

are utilized. The most often used fault indicators are T2 and SPE (Q-statistic).

4.1. Interval-valued indices
The interval [T?] statistic is computed for the first interval principal components using a combination

of interval eigenvalues and interval principal components as follows:

T2(k) = £ (kAT E(K)

—2 aT 2 (14)
T (k) =t (k)A'E(k)

For the interval-valued case, the Q statistic is computed as in the classical case, providing an interval
[SPE] ([Q]) with upper and lower limits that correspond to the upper and lower bounds of the

estimated residuals, as follows:

Q = let| = e" (ke k)

— (15)
Q = lle)? = & (k)e(k)

Given that e(k) = [e; (K), ..., em (K)], €(k) = [€1(K), ..., Em (K)].

4.2 The interval fault detection index

The interval fault detection index was developed owing to the ambiguity in fault detection decisions
due to the interval structure of statistics presented above. When each bound draws a different
conclusion about the appearance of faults [13]. The interval fault detection index presented here is

denoted by the interval square prediction error (/Q), which is defined as:

100 = 1[eCOll1Z = ZT4l[e; ]|’ (16)
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Where

I[e(R)]II? = e2(k) + ej(k)e; (k) + &/ (k) (7).

Similarly, the interval Hotelling T2 statistic (IT'?) is computed as follows:

[E(k)]

g2

IT? (k) = (18)

The combined index, @, is evaluated as a combination of the principal subspace indicator, T2, and
the residual subspace indicator, SPE (Q). For interval data, the interval ® depends on both T2 and
[O] as described by the following equation:

T2 Q
==+ =
— Tq 6
2 g (19)
—zTx

The new interval statistic /® also based on the combined interval fault detection indices IT? &

1Q could be calculated as follows:

IT? (k) 4 1ot

2 2
Ta 8a

[P = (20)

where 72 and 82 are the threshold of IT? (k) and IQ (k) respectively.

5. APPLICATION ON CEMENT ROTARY KILN

This section provides an overview of the cement plant process and describes the signals employed
for fault detection. Additionally, it details the fault detection methodology by specifying the types
and sizes of datasets collected for the development and evaluation of the monitoring methods’

performance

5.1 Process description

The rotary kiln plays a pivotal role in cement production and comprises several key components,

including the head-sealing device, tail-sealing device, and hood. During normal operation,
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the kiln is driven by a primary motor through a reducer, which powers a large gear ring attached to the
cylinder near the kiln tail via a spring plate. Raw materials are fed into the kiln from the top and
transported through the rotating chamber to the opposite end, where they undergo high-temperature

decomposition. In indirect-fired rotary kilns, heat is supplied by an external burner, whereas in
indirect-fired kilns, the heat source is located within the chamber, maintaining the integrity of the raw
materials. The rotation speed and temperature of the cylinder are adjusted to accommodate different
materials and operational requirements. After calcination, the clinker undergoes initial cooling within
the chamber before being transferred to the cooler for further cooling. Detailed descriptions of the

various process variables can be found in [4].

5.2 Application of the Proposed Monitoring Scheme

The proposed K-VPCA technique is applied to monitor industrial cement production in this part. 44
sensors are used to monitor the process. These variables were picked from a pool of 55 to build a strong
monitoring strategy and evaluate its detection capacity based on data from process computers in real
time. Because standard PCA and its interval variants are already noise separation techniques,

preprocessing or filtering the data is unnecessary.

The software used in the simulation was MATLAB. The data utilized in this article are of two types:
1) A healthy dataset which are divided into training (11000 samples), and testing (768 samples) data.

2) A faulty dataset that contains an actual involuntary process fault. It consists of 2084 samples.

The flowchart in fig 1 explains the steps that have been done.

After transforming the interval data into single-valued data, the PCA model is constructed based on
the Cumulative Percentage of Variance (CPV) rule. The performance of the proposed technique is
evaluated using several metrics:

e False Alarm Rate (FAR): This metric is calculated as:

FAR = 100 x 2L oy,
Np

where Nj, ¢ represents the number of samples exceeding the threshold while the system is healthy, and
N}, is the total number of healthy samples.

e Missed Detection Rate (MDR): This metric is calculated as:

MDR = 100 x 2L o,
Ng
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where Ny ¢ is the number of samples below the threshold while the system is faulty, and Ny is the

total number of faulty samples.

e Fault Detection Time Delay (DTD):

DTD =t; — t,.
DTD is the number of samples while the system is faulty before it exceeds its threshold, t; and t, are

the detection time and occurrence time of a fault, respectively.

Table 1 compares the False Alarm Rate (FAR) for T2, O and @ statistics across PCA, VPCA, and K-
VPCA methods for training and testing datasets. In the training set, PCA exhibits a FAR of 10% for
all metrics, whereas VPCA and K-VPCA consistently achieve a lower FAR of 5%, indicating greater
reliability in handling training data. For the testing set, PCA shows significant variability, with a low
FAR for T2, (5.07%) but much higher values for O (18.7%) and @ (12.5%), highlighting its sensitivity
to uncertainty. In contrast, VPCA demonstrates consistent and reduced FAR values (T2 = 6.07%, O =
6.00%, ® = 6.04%), showcasing improved robustness. K-VPCA further enhances performance,
achieving the lowest FAR across all metrics (T2= 5.55%, O = 6.00%, ® = 5.33%), particularly
reducing false alarms in ®. Overall, the results establish K-VPCA as the most robust and reliable

method for fault detection in uncertain nonlinear systems.

Table 1. FAR % contributed by T 2, Q and @ statistics, for the training and testing sets.

Data Set Training Set Testing Set
Statistics T? Q @ T? Q )
PCA [12] 10.0 10.0 10.0 5.07 187 125
VPCA [12] 5.00 5.00 5.00 6.07 6.00 6.04
K-VPCA 5.00 5.00 5.00 5.55 6.00 5.33

5.2 Real process fault detection

Table II presents the False Alarm Rate (FAR), Missed Detection Rate (MDR), and Detection Time
Delay (DTD) for the faulty dataset based on three statistical indices (T 2, Q, and ®) across PCA,
VPCA, and K-VPCA methods. PCA shows a high FAR, particularly for Q (94.8%) and @ (98.4%),
with T2 also contributing significantly (30%), indicating frequent false alarms. Additionally, PCA has
an MDR and DTD of zero across all indices, suggesting it fails to detect faults effectively. VPCA
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reduces FAR substantially, with T2 and ® achieving zero, but exhibits an MDR of 61.2% for Q and a
high DTD for Q (115) and T? (15), indicating delayed and missed fault detections in some cases.

Table 2. FAR, MDR & DTD of the faulty dataset contributed by the three statistic indices.

Data Set FAR MDR DTD
Statistics T? Q () T? Q D T? Q )
PCA [12] 30.0 948 984 0.00 0.00 0.00 0.00 0.00 0.00
VPCA [12] 0.00 6.22 0.00 1.40 612 0.00 15.0 115 20.0

K-VPCA 500 5.00 5.00 5.55 6.00 533 0.00 26.0 0.00

K-VPCA achieves the best balance, with minimal FAR (Q = 0.00%), reduced MDR (Q = 2.14%), and
significantly lower DTD compared to VPCA, particularly for Q (26). Overall, K-VPCA demonstrates
superior fault detection performance with fewer false alarms, improved detection accuracy, and faster
response times, making it the most robust method among the three. Concerning the data of the real
fault, Fig. 2, shows the result of the proposed interval approach K-VPCA method where the first 450

samples are healthy; the remaining ones are related to the real fault.

Real pocess fault

200 400 600 800 1000 1200 1400 1600 1800 2000

b 17 TR ' | ' ' ' =TT

0 L L | | | | | — ]
200

- | 1 i : .

400
|

200 400 600 800 1000 1200 1400 1600 1800 2000
Samobles

Figure 2. T 2, Q, and ® monitoring results of the faulty process operation, using the proposed K-VPCA method.
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4. Conclusion

The interval nature of the projections ensures that approximation errors are eliminated during the fault
identification and isolation process. This study introduces a novel data-driven approach for detecting
faults in uncertain nonlinear processes. By incorporating sensor data and uncertainties through interval
representation, interval-valued methods provide a robust strategy for fault detection and isolation
(FDI). The objective was to evaluate the applicability and reliability of VPCA for

fault identification in nonlinear systems, utilizing data from a cement rotary kiln. The results
demonstrated the effectiveness of the proposed K-VPCA technique compared to interval VPCA and
traditional PCA approaches. This research aims to establish an efficient interval diagnosis

methodology that addresses the limitations of existing interval-based methods.
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