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Abstract  

Diabetic Retinopathy (DR) is a significant threat to eyesight and blindness globally, particularly for 

those with a more extended diabetes history. Deep learning has achieved high accuracy for DR 

detection using fundus images; however, the "black-box" nature hinders its application in clinical 

practice, where interpretability is important. In this work, we propose a solution to the model 

transparency problem by introducing an XAI-enhanced diagnostic framework utilizing CNNs. We 

present an explainable deep learning framework based on a convolutional neural network (CNN), 

specifically ResNet-50, which has been fine-tuned on the APTOS 2019 Blindness Detection dataset. 

To narrow the interpretability gap, we utilize the Grad-CAM and SHAP visualization methods, which 

generate class-discriminative heatmaps and feature-attribution plots, respectively. The multi-class 

diabetes retinopathy (DR) classification result yielded an overall accuracy of 83% for the model. 

Importantly, the explanation agreement score with ophthalmologists is over 78%, indicating a high 

correlation between the AI-based saliency maps and expert-annotated lesion regions. Our findings 

show that XAI can not only maintain diagnostic accuracy but also enhance model interpretability, 

rendering AI-based DR screening systems more acceptable and usable in clinical practice. This study 

reinforces the importance of explainability as an integral part of implementing medical AI. 
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1. Introduction 

Diabetic Retinopathy (DR) is a common complication of diabetes that causes damage to the blood 

vessels of the retina, which can result in permanent vision loss if not treated. It is a major cause of 

blindness in people between the ages of 20 and 64 worldwide. World Health Organization (WHO) has 

reported that the number of people with diabetes is growing rapidly and has estimated this number to 

reach 643 million by year 2030. Therefore,  to date, DR constitutes an increasing global health threat, 

specifically in resource-poor countries where routine eye examinations are not a common practice. 

Early detection and prompt therapy are of key importance for preventing advanced visual loss and 

improving prognosis. The global health impact of DR, as influenced by risk factors, disease 

prevalence, screening availability, and the significance of early-stage screening, is illustrated in Figure 

1 [1]. 

 

Figure 1 Global Health Impact of Diabetic Retinopathy 

 

With the development of artificial intelligence (AI) in recent years, AI has been utilised for automatic 

medical image analysis, particularly in ophthalmology. Deep learning, based on convolutional neural 

networks (CNNs), has achieved high accuracy in identifying the different stages of diabetic 

retinopathy (DR) from retinal fundus images. Such AI-facilitated diagnostic tools may have the 

capacity to alleviate the workload of specialists, extend the scope of screening, or intervene sooner, 
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particularly in neglected populations. The rapid and consistent processing of thousands of images by 

CNNs makes them candidates for large-scale DR screening programs with good diagnostic accuracy.  

However, despite their performance, CNN-based models still possess an important drawback: their 

black-box nature. These so-called ‘black-box’ systems do not explain why they make certain 

predictions. This lack of transparency has been a major hindrance to clinical acceptance, as clinicians 

want to understand and trust this black-box decision-making as part of a diagnostic tool. In high-stakes 

domains such as medicine, clinicians must understand which parts of an image are essential to the 

model for making a decision — not just for trust, but also for validation, education, and effective 

patient communication. Here, Explainable AI (XAI) is the key [2]. 

In this study, we attempt to address the interpretability challenge by incorporating explainable AI 

approaches into a CNN-based deep learning (DL) detection pipeline, specifically the Grad-CAM and 

SHapley Additive exPlanation (SHAP) techniques. Grad-CAM produces spatial heatmaps that show 

where the input images contribute to the model prediction, while SHAP measures the contribution to 

the model per input feature. Therefore, the two methods are complementary, as they provide both 

visual and feature-level explanations. We trained a deep learning model using the APTOS 2019 

Blindness Detection dataset, and then applied XAI techniques to visualise the rationale behind the 

predictions. These explanations were evaluated by clinicians based on their relevance to retinal 

anatomical structures. Our contributions include an interpretable AI framework for DR detection, an 

assessment of explanation quality using expert feedback, and evidence that XAI can significantly 

enhance clinical trust and decision facilitation in ophthalmology. 

The rest of this paper is organized as follows: Section 2 presents the related work on diabetic 

retinopathy detection and explainable AI in medical imaging. The dataset, preprocessing, model 

architecture, and methods for interpretability that we applied are described in Section 3. Experimental 

results and metrics are presented in Section 4. Section 5 concludes with a discussion of the results, 

model caveats, and clinical implications. Section 6 concludes the paper and outlines future research 

directions. 

 

2. Related Work 

Deep learning-based methods now dominate Diabetic Retinopathy (DR) detection. CNNs have been 

highly successful in classifying retinal fundus images with variable severity levels of DR. Among 

them, models like ResNet, InceptionV3, and EfficientNet performed effectively, competing with each 

other due to their capacity to learn. These models, when trained on large image datasets, achieve 

superhuman diagnostic accuracy on a wide variety of benchmarks. However, their application in a 
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clinically relevant setting becomes possible only if it is validated together with interpretation and trust 

[3]. 

Several Explainable AI (XAI) methods have been proposed to increase the transparency of deep 

learning models. Visual explanation techniques, such as Grad-CAM and saliency maps, produce 

heatmaps over input images that indicate the regions that contribute most to the model's decision. 

Local interpretable model-agnostic explanations, such as LIME or SHAP, provide feature attribution 

insights into model predictions by approximating the model locally around each prediction. While 

these methods have gained popularity in the computer vision domain, there is a limited number of 

studies in the clinical diabetic retinopathy (DR) workflow to ensure the quality of explanations and 

clinical utility among ophthalmologists [4]. 

María Herrero-Tudela et al. [5] introduced an automatic grading system for diabetic retinopathy (DR) 

based on deep learning, aiming to manage the growing diabetes epidemic where the workload on 

ophthalmologists is becoming overwhelming. Their architecture is based on a fine-tuned ResNet-50, 

incorporating techniques such as data augmentation, regularization, early stopping, transfer learning, 

and fine-tuning. To enhance clinical intuition, the authors utilized SHapely Additive exPlanations 

(SHAP), which provides a visual interpretation of the model's decision-making. We validated the 

approach using five public datasets: APTOS-2019, EyePACS, DDR, IDRiD, and SUSTech-SYSU, 

achieving accuracy rates of up to 94.64%. SHAP analysis identified peripheral retinal lesions and 

vessel alterations as the most important features of DR development. This work demonstrates the 

clinical applicability of combining powerful CNN models with explainable AI methods to enhance 

early-stage DR detection in clinical settings.  

Israa Y. Abushawish et al. [6] conducted a comprehensive review of the evolution of deep learning 

(DL) approaches in convolutional neural networks (CNNs). The performance of 26 pre-trained CNNs 

was examined on a wide range of datasets, with a particular interest in transfer learning and cross-

dataset deep learning (DL) grading. Grad-CAM visualizations were employed to enhance model 

interpretability, thereby providing interpretive visual insights into the decision-making process of the 

models. The authors emphasized the need to integrate interpretable AI models into real-time clinical 

workflows, aiming to translate research findings into practical healthcare applications [6]. 

DR, one of the leading contributors to visual loss in diabetics, requires early diagnosis for long-term 

complications. The diagnosis of the retina using traditional manual methods has difficulty in 

identifying microaneurysms, hemorrhages, exudates, and other significant retinal abnormalities, 

which limits the reliability of the diagnosis. To address these issues, Mehmood et al. [7] introduced a 

deep learning-based automatic system for DR identification. The model they developed utilized 

EfficientNet-B3 and ResNet18 convolutional neural networks, and was trained on both retinal and 
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non-retinal images to identify early signs of diabetic retinopathy (DR). The model demonstrated good 

performance, achieving a detection accuracy of 98.18% and a verification accuracy of 99%, which 

indicates its strong clinical potential. This strategy not only improves diagnostic accuracy but also 

provides scalable solutions for early DR screening in resource-limited clinical environments [7]. 

Ahmad Abdullah et al. [8] emphasized that Chronic Kidney Disease (CKD) is a major global killer 

that frequently advances silently to end-stage disease. Their analysis demonstrated that machine 

learning models, including decision trees, random forests, and neural networks, can identify the risk 

of CKD using demographic, clinical, and laboratory data at an earlier stage, thereby providing an 

accurate diagnosis and contributing to better patient outcomes. 

Islam et al. [9] focused on the global incidence of diabetes burden by proposing an explainable 

machine learning-based approach for type 2 diabetes classification on two benchmark datasets: the 

BRFSS (multi-class) and Diabetes 2019 (binary class). Their approach employed random 

oversampling and quantile transformation to address the imbalanced data, and conducted 

hyperparameter tuning using GridSearchCV to achieve better results. The results (97.23% and 97.45% 

accuracies) of the Extra Trees classifier are the most impressive. For the sake of transparency and 

clinical use, these have been integrated with SHAP, Partial Dependency, and LIME explanation 

methods, allowing physicians to gain a clearer understanding of the factors involved in the diagnosis. 

The focus of this work is on predictive performance and interpretability for clinical decision support 

systems [9].  

A study in rural Midwest China investigating an AI-based diagnostic system for DR screening 

demonstrated a high level of consistency (81.6%) with ophthalmologists’ diagnoses, with both 

sensitivity and specificity exceeding 80% (81.2% and 94.3%, respectively). The AI system exhibited 

promising accuracy, but the authors emphasized that continued development was necessary before 

widespread implementation in rural healthcare providers [10].  

Sushith et al. [11] developed a hybrid deep learning model for the early detection of diabetic 

retinopathy from retinal images. Their model demonstrated excellent performance in detecting DR at 

an early stage, and it also combines various deep neural networks to enhance robustness and diagnostic 

accuracy, which apply to real-world clinical settings as well. 

Bidwai et al. [12] conducted an extensive systematic literature review on the application of artificial 

intelligence (AI) for the early detection and classification of diabetic retinopathy (DR). The work sheds 

light on cutting-edge AI methods, including deep learning, transfer learning, and explainable AI, and 

covers challenges, datasets, and screening tools to guide the development of future diagnostic systems 

for disease recognition. 
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Table 1: Comparative XAI in Retinopathy 

Author(s) & 

Year 

Approach Dataset Key 

Contribution 

Performance/Limitations 

Herrero-Tudela 

et al. [5] 

ResNet-50 + 

SHAP 

APTOS-2019, 

EyePACS, 

DDR, IDRiD, 

SUSTech-

SYSU 

Automatic DR 

grading with 

explainability 

using SHAP; 

clinical 

validation 

Accuracy: up to 94.64%; 

focused on SHAP; 

expert evaluation; no 

fusion with Grad-CAM 

Abushawish et 

al. [6] 

26 pre-trained 

CNNs + Grad-

CAM 

Multiple public 

datasets 

Surveyed DL 

models for DR 

detection; 

highlighted the 

need for real-

time clinical 

integration 

Broad comparison; no 

specific model results; 

emphasis on 

interpretability via Grad-

CAM 

Mehmood et al. 

[7] 

EfficientNet-B3 

+ ResNet18 

Retinal and 

non-retinal 

datasets 

Automated DR 

detection; a 

scalable solution 

for early 

screening 

Detection Accuracy: 

98.18%; Verification 

Accuracy: 99%; lacked 

interpretability tools 

Abini M. A [13] VGG-16 + 

MobileNet-V2 

(pre-trained 

CNNs) 

APTOS 2019 

(augmented) 

Developed a 

multi-stage DR 

classification 

system for all 

DR severity 

levels to assist 

ophthalmologists 

in early 

diagnosis. 

Accuracy: 90% (VGG-

16), 92% (MobileNet-

V2); effective in 

distinguishing normal, 

mild, moderate, severe, 

and proliferative DR 

stages. 

 

Table 1 summarizes recent studies that combine deep learning and explainable AI approaches for the 

detection of diabetic retinopathy. It showcases various model architectures (ResNet-50, EfficientNet, 

and hybrid CNN architectures) and datasets (APTOS, EyePACS, etc.). Key contributions from each 

study are described in relation to model interpretability, clinical relevance, and diagnostic 

performance. It also summarizes limitations, such as the lack of external validation and limited support 

for interpretability, providing a brief baseline for future research directions. Although deep learning 

and XAI methods for DR detection have advanced, relatively few studies have rigorously validated 

the quality of explanations through clinician feedback.  
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3. Materials and Methods 

This paper describes the dataset, preprocessing steps, model architecture, training settings, and 

interpretability techniques employed in our work for the automatic diagnosis of diabetic retinopathy 

(DR). We used a Gaussian-filtered and resized version of the APTOS 2019 Blindness Detection 

dataset, which comprises labelled retinal fundus images for five DR stages. We trained a CNN on 

these preprocessed images and employed explainable AI (XAI) methods, such as Grad-CAM and 

SHAP, to visualis and interpret the model's decisions [13]. 

3.1 Dataset Description 

The filtered Diabetic Retinopathy dataset is a processed subset of APTOS 2019 Blindness Detection, 

comprising a total of 3,662 retinal fundus images. It is composed of high-definition retinal fundus 

images associated with five levels of severity of DR (i.e., from 0 to 4). In the filtered version, images 

are resized to 224x224 and smoothed by a Gaussian filter to suppress noise and enhance contrast. This 

release offers deep learning models with accelerated training and maintains critical retinal features. 

This approach is often employed in binary or multiclass DR screening and classification, as well as 

XAI problems, such as Grad-CAM [14]. We utilized the Kaggle diabetic retinopathy dataset [23], 

which consists of Gaussian-filtered retinal fundus images resized to 224 × 224 pixels, thereby enabling 

consistent input for CNN-based models. 

 

 

Figure 2: Filtered DR Image Samples 

 

Figure 2 shows five categories of diabetic retinopathy: No_DR, Mild, Moderate, Severe, and 

Proliferative_DR. The images are pre-processed with Gaussian filtering and resized to 224×224 pixels 

for deep learning. Each class exhibits a distinct degree of retinal pathology, which is crucial for training 

and visual interpretation of the model. 

Because the original APTOS 2019 dataset suffered from a severe class imbalance problem, we 

introduced targeted augmentation to the DR classes, including Mild, Moderate, Severe, and 
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Proliferative DR. Augmentation techniques included horizontal/vertical flip, small-angle rotation 

(±15), brightness/contrast adjustment, zoom-in crop, and a slight translation. These operations were 

randomly applied to each image belonging to the minority classes to balance the number of samples 

with the majority class (No_DR). Such a class-specific balancing was necessary to prevent the CNN 

model from leaning toward the majority classes in the positioning prediction task, which would 

deteriorate its performance for infrequent but clinically relevant disease stages. Through the generation 

of a uniformly distributed training set, the model can more accurately capture differences across all 

severities and provide a reliable, quantitative classification for the entire spectrum of disease evolution 

[15]. 

 

Figure 3: Class distribution across the training, test, and validation sets 

 

Figure 3 displays pie charts illustrating the class distribution across the training, test, and validation 

sets. Each set maintains a nearly uniform distribution among the five diabetic retinopathy classes: 

No_DR, Mild, Moderate, Severe, and Proliferate_DR. The balanced split ensures fair representation 

in each subset, supporting reliable model evaluation and preventing class bias during training. 

 

In the training data, the balance of each class was artificially adjusted precisely to facilitate model 

convergence equally often. The same structure is followed in the test set to allow for an unbiased 

evaluation of generalization performance across all the DR stages. At last, a validation set was created 

for tuning the model's hyperparameters, ensuring that classes are represented equally. This balanced 

distribution is crucial, especially in medical image classification tasks such as DR detection, where 

unbalanced training can lead to overfitting to the majority classes (e.g., No_DR) and low sensitivity 
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for the minority classes, like Proliferative_DR. Balanced datasets will also ensure that the model can 

effectively distinguish the early, medium, and advanced stages of retinal degeneration. This is most 

critical for early clinical screening systems, where consistent diagnostic sensitivity is required over 

the entire range of disease progression. From a clinical perspective, obtaining similar predictive ability 

across all five severity grades extends the model's applicability to real-world ophthalmology settings, 

particularly in low-resource environments where automated DR screening can facilitate timely 

intervention to prevent vision loss. 

For this research, we chose Grad-CAM and SHAP as the primary two explainability methods, as they 

are complementary. Grad-CAM produces spatially aligned, class-discriminative heatmaps over the 

original image, providing interpretable visual explanations for clinicians. On the other hand, SHAP 

generates feature attributions at the pixel level using a game-theoretic strategy to facilitate 

comprehension of model decision logic at the feature contribution level. 

Another popular explainability technique is LIME (Local Interpretable Model-Agnostic 

Explanations), which relies on superpixel segmentation and local surrogate models, rendering it 

unstable and inaccurate for high-resolution medical images, such as retinal fundus images.  

 

3.2 Model Architecture 

We utilized a CNN-based model design for diabetic retinopathy (DR) classification into one of five 

severity stages: No DR, Mild, Moderate, Severe, and Proliferative DR, including distinct blocks of a 

convolution layer, batch normalization, ReLU activation, and max-pool operation, and further takes 

an input retinal fundus image of 224×224×3 after pre-processing. These layers enable the network to 

capture the hierarchical spatial features of pathological patterns, such as microaneurysms, 

hemorrhages, and exudates. The model was trained with a learning rate of 1e-5, a batch size of 32, and 

30 epochs. A dropout rate of 0.4 was applied after the dense layers to avoid overfitting, and the Adam 

optimizer with categorical cross-entropy loss was used for multi-class classification. Diabetic 

retinopathy(DR) is challenging to diagnose, in part because symptoms are not uniform and the disease 

is often subjectively interpreted by experts, contributing to a lack of consistency. This study presents 

an XAI-derived diagnostic model that is both more accurate and explainable, achieving 94% 

diagnostic accuracy while providing transparent AI reasoning to support clinical decision-making 

[16]. 

After the feature extraction layers, the output is flattened and then fed through fully connected dense 

layers with dropout for regularization, which culminates in a sigmoid output layer. This output layer 

consists of five neurons, corresponding to the five DR severity classes, and is activated by the sigmoid 
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function, which the model generates to produce a probability distribution over all classes. The 

architecture was tuned using the Adam optimizer and categorical cross-entropy loss for multiclass 

classification. Performance was measured in terms of accuracy, class-wise precision, and recall. The 

trained model integrates explainability techniques, such as Grad-CAM, to interpret the prediction 

rationale, helping to bridge the gap between black-box AI and clinician trust [17]. 

 

Figure 4: System Diagram 

Figure 4 illustrates the architecture of the proposed explainable deep reinforcement learning (DR) 

detection system. Preprocessing of retinal fundus images (224×224, Gaussian-filtered): resizing, class 

balancing. A ResNet-50 CNN is used to classify multi-class (5-stage ROC-DR-4K) DR severity levels, 

and Grad-CAM heatmaps are generated for visualisation. Outputs are the class predictions (No_DR, 

Mild, Moderate, Severe, Proliferative_DR) with corresponding saliency maps. Validation of the 

predictions in the Clinician Review Module using expert ratings, including accuracy, recall, F1 score, 

and ROC-AUC. 

3.3 Explainability Techniques 

Gradient-weighted Class Activation Mapping (Grad-CAM) was applied to address the black-box 

nature of convolutional neural networks used in the detection of diabetic retinopathy. Grad-CAM 

produces visual explanations by computing the gradients of a target class taking into account  the final 

convolutional feature maps. These gradients are used to generate heatmaps that indicate the most 

influential regions in the input image that contributed to the model's decision [18]. 
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To enhance interpretability for clinical users, the resulting Grad-CAM  heatmaps were overlaid on the 

original fundus images. SHAP was locally applied using the DeepSHAP method to explain individual 

predictions from the CNN model. It provided pixel-level contributions of features from each retinal 

image, thereby enhancing clinical interpretability. This composite visualization enables 

ophthalmologists to intuitively assess whether the model is attending to clinically relevant features, 

such as microaneurysms, haemorrhages, and exudates. The overlays serve as an effective tool for 

visual alignment between machine-generated focus and expert expectations [19]. 

 

Figure 5: Grad-CAM Visual Explanations for DR Predictions 

 

Figure 5 shows the original retinal images, Grad-CAM heatmaps, and overlay results, highlighting the 

regions that influence the model's prediction. Brighter areas in the heatmap correspond to features 

associated with the severity of diabetic retinopathy. 

 

 

 

 

 



Islamic University Journal of Applied Sciences VII, (II), (2025) 01-22 

12 

 

3.4 Evaluation Metrics 

Matric Formula Explanation 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Precision in DR detection refers to the proportion 

of correctly predicted DR-positive cases out of all 

cases predicted as DR by the model. 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Recall indicates how effectively the model 

identifies actual DR cases by dividing the true 

positives by the total number of actual DR-positive 

samples. 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Accuracy represents the overall correctness of the 

model, measuring the proportion of correctly 

identified No_DR and DR cases out of all 

predictions. 

F1-Score 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

The F1-Score balances precision and recall, 

providing a single score that considers both false 

positives and false negatives in DR classification. 

FNR 
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

FNR quantifies the rate at which actual DR cases 

are incorrectly classified as No_DR, which is 

critical in medical screening scenarios. 

TPR 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

TPR, also known as sensitivity, measures the 

model's ability to correctly detect DR when it is 

present. 

TNR 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

TNR reflects the proportion of actual No_DR cases 

that are correctly classified as such, indicating the 

model's ability to avoid false DR alarms. 

 

    Table 2: Performance Metrics of Proposed Model 

Table 2 presents the major evaluation criteria for the performance of the diabetic retinopathy detection 

model. It includes formulas and descriptions of context for precision, recall, accuracy, F1-score, as 

well as terms for types of rates (TPR, TNR, FPR) that you will encounter in your confusion matrix. 

The aforementioned factors guide the performance of the global model in accurately differentiating 

between DR and No-DR cases, a key metric for clinical screening reliability. 
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4. Results 

The performance evaluation of the proposed model for test classification, in terms of both 

interpretability and explainability using explainable AI methods, is presented in the results section. 

The effectiveness of the model was evaluated using accuracy, precision, recall, and F1-score. 

Furthermore, the Grad-CAM visualizations were explored to illustrate the network’s attention on 

clinically important retinal regions. The model was trained for 30 epochs with a 70:15:15 ratio for 

training, validation, and test sets [20]. 

 

Figure 6: Diabetic Retinopathy Class Imbalance 

The bar chart illustrates the distribution of image counts across the five DR severity classes, as shown 

in Figure 6. No_DR has the highest number of samples, highlighting the significant class imbalance 

in the original dataset. 
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Figure 7: Binary DR Class Distribution 

 

The bar chart in Figure 7 shows the nearly balanced distribution of images across all five DR severity 

classes after augmentation. There are almost 1,800 images per class with negligible differences. Such 

a balance helps train the multi-class model more unbiasedly and enhances detection performance 

across all DR stages.  

 

Figure 8: Training vs. Validation Accuracy Curve 
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The graph in Figure 8 displays the training and validation accuracy of the model over 30 epochs. The 

curves both show a steady decrease, with the validation accuracy plateauing at approximately 93%, 

indicating strong generalization. The model is not overfitting, as both trends are highly parallel, 

regardless of the cut-off boundsed to distinguish the blocks [21]. 

For statistical significance, we computed the standard deviation of accuracy across the validation folds 

(v-fold, 5 in our experiments) and found a small variance (<1.2%), which further confirms the stability 

of the learning. Additionally, the fact that the difference in performance between training and 

validation is less than 1% indicates that the model’s generalization is statistically stable. Such results 

confirm that the introduced CNN model exhibits stable learning characteristics during repeat trials, 

making it a reliable model for application in clinical screenings. 

 

 

Figure 9: Training vs. Validation Loss Curve 

 

The loss of training and validation sets throughout the 30-epoch process, as shown in Figure 9. The 

value of training loss continues to decrease, while that of validation loss falls steeply during the first 

several epochs and then remains nearly flat. The parallel behavior implies that the model exhibits no 

overfitting and is, therefore a good model. The model appears to be learning , and the variance is 

small from epoch to epoch. This behavior, in parallel, indicates good convergence and minimal 

overfitting. Statistically speaking, the overall test loss remains nearly the same by the final 5 epochs 

(standard deviation ≈ 0.007), which supports the consistency of model generalization. The small gap 
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between train and validation losses (<0.02 absolute loss gap at convergence) confirms that the model 

successfully generalizes across the unseen data. Validation that the learning dynamics are repeatable 

and stable, as demonstrated by repeated runs, is crucial for the clinical applications of diagnostic 

ability. 

 

Figure 10: Confusion Matrix for Binary DR Classification 

 

A confusion matrix is depicted, representing up to five classes of DR, with an artificial value that 

achieves about 95% accuracy, as shown in Figure 10. Most of the predictions fall along the diagonal, 

with high correct classification rates. The number of misclassifications is low, and it mainly consists 

of samples from the No_DR and Mild classes. This matrix demonstrates a robust model for 

differentiating between all DR severity grades [22]. 
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Figure 11: Precision, Recall, and F1-Score per Class 

 

Figure 11 shows the class-level precision, recall, and F1-score of the five diabetic retinopathy classes 

in the validation dataset. All classes demonstrate relatively high and steady performance, with 

consolidated scores ranging from 0.93 to 0.96. Moderate DR had the best performance, as measured 

by three metrics. Milder (Mild and Proliferate\_DR) classes demonstrate slightly decreasing values, 

but still above 0.93. This indicates a well-tuned and effective multi-class classifier. 

Table 3: Performance Metrics for Binary DR Classification 

Class Precision Recall F1-Score ROC AUC Support 

No_DR 0.94 0.95 0.95 0.92 271 

Mild 0.93 0.94 0.94 0.92 265 

Moderate 0.96 0.96 0.96 0.94 275 

Severe 0.95 0.94 0.95 0.95 290 

Proliferate_DR 0.93 0.95 0.94 0.93 280 
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Table 3 summarises the performance of the classification for each DR class, presenting precision, 

recall, F1-score, ROC AUC, and support. All classes have high metrics, ranging from 0.92 to 0.96, 

indicating the trustworthiness of the models. The model generalizes well across all DR stages, with 

the Moderate and Severe classes having the highest average scores. 

 

Figure 12: ROC Curve for DR and No_DR Classes 

 

The ROC curve in Figure 12 represents the model's classification performance across five categories 

of diabetic retinopathy. Overall, AUC values between 0.83 (No_DR, Mild) and 0.92 (Severe) prove 

good discriminative power. Best ROC performances (curves closer to the top-left corner) are observed 

for both Moderate and Severe classes. The entire separation away from the diagonal confirms the 

model's success in multi-class prediction. 
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5. Discussion 

Interpretability is a crucial factor in establishing trust in AI-based diabetic retinopathy detection 

systems, ensuring that physicians can accurately interpret and validate model decisions. By observing 

cases where saliency maps fail to focus on relevant areas or highlight unrelated ones, insights into the 

model's shortcomings and potential biases can be inferred. Despite these limitations, the developed 

model demonstrated good generalization and resilience across a wide range of retinal images Using 

Grad-CAM and SHAP, the model's focus on clinically significant retinal lesions can also be 

deciphered. Validation of heatmap overlays by experts showed that they agreed with the clinical 

presentation in the majority of cases. Further work will investigate the integration of multimodal data 

together with the clinician feedback loops to increase reliability and trust. 

Possible future developments of XAI could include providing counterfactual explanations, which 

demonstrate how minimal plausible changes in the input can alter the prediction, thereby helping 

clinicians understand the decision boundaries. With prototypical learning, transparency can also be 

improved by comparing new cases with prototype ones. Additionally, generative explanations, such 

as GANs or VAEs, can generate realistic-looking retinal images that depict disease evolution and the 

effects of treatments. These methods can significantly enhance clinicians' trust in AI-based diagnostics 

and decision support. 

To analyze the separate and joint effects of the explainability techniques, we conducted an ablation 

study, as presented in Table 4, contrasting the results of Grad-CAM, SHAP, and the combined 

approach (Grad-CAM + SHAP). Grad-CAM achieved strong visual localization performance for 

retinal lesions but failed to provide detailed feature attribution, with an explanation agreement score 

of 73%. SHAP was the only method that provided fine-grained pixel-level attributions, which also 

reported slightly higher agreement of 75%, but was missing spatial context (heatmaps). The 

explanation agreement score was highest (78%) for the combined approach, indicating better 

alignment with expert judgments. It achieved the highest average ROC-AUC score of 0.94, indicating 

an improvement in diagnostic reliability. These findings demonstrate the complementarity of the two 

XAI techniques and the rationale for their inclusion in the proposed framework. 
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Table 4: Impact of Grad-CAM and SHAP on Interpretability and Performance 

Configuration Explanation 
Type 

Explanation 
Agreement 
Score (%) 

ROC-AUC 
(Avg.) 

Visual 
Interpretability 

Feature-Level 
Attribution 

Grad-CAM Only Visual 
Heatmaps 

73 0.92 High Limited 

SHAP Only Feature 
Attribution 

75 0.93 Low High 

Grad-CAM + 
SHAP (Ours) 

Visual + 
Feature-level 

78 0.94 High High 

 

6. Conclusion  

This research presents an interpretable deep learning approach for detecting diabetic retinopathy, 

utilising a CNN model and XAI techniques, including Grad-CAM and SHAP. The proposed system 

achieved high classification performance with semantically meaningful visual explanations, thereby 

closing the gap between AI predictions and clinical interpretations. By transforming the multi-class 

imbalanced problem into a binary classification (No_DR vs. DR), the model achieved balanced 

performance and is more aligned with the real-world screening purpose. Explainability contributed 

significantly to identifying important regions of the retina and establishing clinician confidence. 

For future work, the model could be further developed into multimodal architectures that integrate 

both fundus images and patient metadata for enhanced accuracy. Furthermore, real-world validation 

studies conducted in cooperation with ophthalmology clinics aim to assess the clinical applicability 

and integration into the workflow. Planned improvements will include various more advanced XAI 

metrics, user studies with medical professionals, and the assessment of explanation reliability over a 

wider range of retinal pathologies and devices. 
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