Islamic University Journal of Applied Sciences VII, (II), (2025) 68-78

Islamic University Journal of Applied Sciences (IUJAS)

https://journals.iu.edu.sa/jesc/Main/Issues

Volume VII, Issue II, December 2025, Pages 68-78

Al-Based Optimization of Submerged Arc Welding Using AISA
Algorithm

Badis Lekouaghet !, Mohammed Haddad !, Noureddine Hamouda
' Research Center in Industrial Technologies (CRTI), P.O. Box 64, Cheraga 16014, Algiers, Algeria,

b.lekouaghet@crti.dz, m.haddad@crti.dz, n.hamouda@crti.dz

*Corresponding author: (Mohammed Haddad), Email: m.haddad@crti.dz

Abstract

The precision of parameter selection in submerged arc welding (SAW) significantly influences weld
quality, strength, and efficiency in industrial manufacturing. Artificial intelligence offers advanced
tools for addressing the complex, non-linear optimization challenges in welding processes where
traditional trial-and-error methods fall short. This paper introduces the Adolescent Identity Search
Algorithm (AISA), an Al-based, human-inspired optimization technique, to optimize SAW
parameters. Implemented in MATLAB, the algorithm was applied to minimize bead width (BW)—a
critical indicator of weld quality—by refining welding current, voltage, speed, and wire feed.
Comparative analysis with the Rao-1 algorithm was conducted under varying population sizes and
iteration counts. Results show that AISA consistently achieved a minimum bead width of 17.06 mm
with a success rate exceeding 99%, outperforming Rao-1, which recorded a minimum of 17.23 mm
under the same conditions. These findings demonstrate AISA’s robustness, stability, and adaptability
in parameter optimization, confirming its potential as an effective tool for enhancing manufacturing

precision.
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1. Introduction

In manufacturing, welding quality plays a pivotal role in determining the durability, strength, and
overall reliability of components and structures. With the growing, demand for precision and quality
in welded products across industries—from automotive to aerospace—optimizing welding parameters
has become crucial. Key parameters, such as current, voltage, welding speed, and gas flow rate,
directly influence the quality of welds and, consequently, the performance of welded structures [1].
However, identifying the optimal combination of these parameters is challenging due to the complexity
and interdependence of welding variables [2]. Consequently, this optimization task resembles a
complex decision-making process, where multiple factors must be balanced to achieve a desired

outcome.

Artificial Intelligence (AI) has emerged as a valuable tool for solving such optimization challenges.
Among Al methodologies, metaheuristic optimization techniques stand out as effective approaches for
navigating large solution spaces and identifying optimal parameters in complex systems [3], [4], [5].
These algorithms simulate natural decision-making processes observed in biological systems, allowing

them to address complex, non-linear optimization problems by iteratively refining potential solutions.

In the context of welding, metaheuristic optimization plays a dual role: not only does it optimize
specific process parameters to improve weld quality, but it also aids in decision-making by
systematically evaluating trade-offs between conflicting objectives, such as minimizing weld defects
while maximizing strength and efficiency [6]. For instance, adjusting the welding speed to increase
productivity might affect the penetration and quality of the weld, requiring a decision-making approach
that considers both performance and quality metrics. Metaheuristic algorithms are particularly
effective here as they employ exploration and exploitation strategies to balance these objectives,
identifying solutions that might not be obvious through traditional trial-and-error methods. Rao
algorithms [2], [7] whale optimization algorithm [5], Heat Transfer Search Algorithm [8], grey wolf
optimization [9], and different physics-based optimization techniques [6] are recent examples of

optimization methods implementation to identify the best welding process input parameters.

These studies have highlighted the efficacy of metaheuristic algorithms in welding by demonstrating
their ability to enhance weld strength and reduce defects through optimized input variables. However,
the “No-free lunch theory” [10] confirms that no single algorithm can universally outperform others
across all optimization issues. This insight opens new opportunities for researchers to develop or
explore alternative algorithms for various challenges. Moreover, the exploration of human-based

algorithms for parameter identification in welding processes remains limited.
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This paper aims to address these gaps by evaluating the application of a recent human-based algorithm
for parameter optimization in submerged arc welding (SAW). This approach, known as the Adolescent
Identity Search Algorithm (AISA) [11], draws on the idea that adolescent identity development in a
peer group can be categorized into three various behaviours: identifying favourable group
characteristics, emulating peers with desirable traits, and learning from observed undesirable traits

within the group.
2. Methods
2.1 The selected welding process and objective function

In this work, we explore a recent human-based optimization algorithm, the AISA algorithm [11], to
determine the optimal input parameters for the Submerged Arc Welding (SAW) process. During SAW,
an arc is formed between a consumable electrode and the work piece, with the arc concealed beneath
a layer of granular flux [2]. This unique flux layer not only protects against atmospheric contamination
but also boosts heat transfer efficiency and enables weld metal alloying. SAW is extensively applied
in industries such as nuclear, aerospace, automotive, and marine due to its reliability, high deposition
rates, high productivity, and deep weld penetration. The optimization problem in this case study is

based on empirical models for the bead width (BW) outlined in [12] and given by Eq.
(1) as follows:

minimize BW = 475.425 — 0.9814[] — 15.0015V + 2.4805S — 0.351F
+0.0011791% + 0.25575V2 — 0.10978152 + 0.000773F> (1)

where I is the welding current (4) and V represents the voltage (V). The wire feed (cm/min) and the
welding speed (cm/min) are noted by F and S, respectively. In this case, studying the regression
model given in the previous equation is considered the objective function. Thus, the process parameters

that must be identified are 7, V, F, and S.

Although Eq. (1) optimizes only BW, the AISA framework can be easily adapted for multi-objective
optimization. This can be achieved by (i) defining a weighted composite objective function that
aggregates several quality metrics such as penetration depth and Heat-Affected Zone (HAZ) width, or
(i1) implementing a Pareto-based strategy where AISA identifies a set of non-dominated solutions
representing optimal trade-offs among multiple objectives. This extension will be considered in future

work to broaden the applicability of the approach.

The empirical model for BW adopted in this study, originally presented by Rao and Rai [12], was

selected due to its strong experimental validation and frequent use in welding optimization literature.
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This regression equation reliably captures the nonlinear relationships between welding parameters
(current, voltage, speed, and wire feed) and bead geometry, making it an appropriate and credible

objective function for evaluating and optimizing welding quality in the present work.
2.2 The proposed Adolescent Identity Search Algorithm (AISA)

This study implements the Adolescent Identity Search Algorithm (AISA) [11], a recently developed
human-based optimization technique, to solve the parameter estimation problem in Submerged Arc
Welding (SAW). Bogar and Beyhan [11] formulated AISA based on identity formation processes
observed in adolescent peer groups, modeling it as an optimization framework. The algorithm

comprises three fundamental identity formation behaviors:

Feature Selection (Case 1): This mechanism identifies optimal traits within the peer group through
orthogonal mapping via Chebyshev polynomials, ensuring diverse feature selection across the solution

space. For thejth adolescent, the position vector update is expressed as:

X = I =1 (x) — x*) ()

where x* represents the optimal trait vector in the population and r; € [0, 1] is a stochastic coefficient.
Role Model Imitation (Case 2): This behavior facilitates convergence toward high-performing
solutions by emulating attributes of exemplary individuals within the population, formulated as:

Jow = x] =1y (xP — x™™) 3)

where xP denotes the pth adolescent (p # rm), x"™ represents the role model vector, and r, € [0, 1]

X

is a random parameter.

Undesirable Trait Adoption (Case 3): This mechanism introduces stochastic perturbations to avoid

local optima by incorporating variation through:

x1]1€w =x/ - r3(xj - xq) “)
where x? denotes a randomly selected undesirable trait vector and 13 € [0,1] is a stochastic

coefficient.

The position update follows a probabilistic selection mechanism among these three cases:

1
. ) ifr, <=
Case 1: x/ —ry(x/ — x7), 3 , (5)
Xpow =13 Case 2: x) — 1, (xP —x™), if =<1, < 3
Case 3: x/ — ry(x/ — x9), 2
ifT'4 > §
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where r, € [0, 1] is a random variable determining case selection. For comprehensive details on AISA

methodology, readers are directed to references [11] and [13].

In this study, the stochastic coefficients 1y, 15, 13 were uniformly sampled from the interval [0,1], a
common choice in metaheuristic optimization to maintain unbiased exploration of the search space.
While this approach yielded stable performance, no alternative distributions were tested. The AISA

algorithm terminates when either the maximum number of iterations (MaxlIt) is reached.

Lastly, Figure 1 illustrates the workflow of AISA, consisting of initialization, probabilistic selection
among three identity formation mechanisms (feature selection, role model imitation, and undesirable
trait adoption), and iterative updates until stopping conditions are met. This structure allows AISA to

balance exploration and exploitation effectively.

Initialize the population Initialize calculate | | O™ the regressor matrix
size and conditions " fitness R

Functional-Link Network

Find the best |
feature vector (x*)

Random number

_| Update x{;ew (Case 1):

Xy =% =1 (x) —x7)

Update x),, (Case2): | Yes

x;;ew =x/ - Ty (xP — x™)

Update xjiew (Case 3):
oy = x5 = 13(x) = x9)

Random number
1/3 <, <2/37

Termination

condition met
?

o : J
Calculate fitness of x;,,,

Yes

End

Figure 1. Flowchart of AISA method [14].

3. Simulation results

This section describes the implementation of the proposed AISA algorithm in MATLAB to optimize
SAW welding process parameters, aiming to minimize bead width as defined in Eq. 1. For comparison,
we also implemented the recently studied Rao method, which has been shown to effectively determine
welding process parameters [2]. We compare these methods by evaluating the impact of population
size (PopSize) and iteration count (MaxlIt), exploring two distinct scenarios. The AISA was
implemented in MATLAB R2021a on a workstation equipped with an Intel 17 processor and 32 GB
RAM.
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3.1 First case study

In this case study, we assess the effect of varying the iteration count, initially set at 30, then increased
to MaxIt = 50, while keeping the population size constant at Pop-Size = 30. To ensure reliable
comparisons, each method is independently run 15 times. “Avg” denotes the average success rate (%)
across all runs. The results for minimizing DW, including the best parameters, statistical values, and

convergence curves, are presented in Table 1 and Table 2, as well as in Figure 2.

The simulation results in Table 1 show that AISA achieves the lowest DW value (17.08 mm) and
outperforms the method used in [2]. Furthermore, the statistical results confirm this outcome with a
lower standard deviation (Std) value, indicating greater stability. Figure 2(a) shows the convergence
graphs, where it is evident that AISA consistently converges better than the Rao-1 method. With the
number of iterations increased to 50, both methods improve in minimizing the DW value. Although
both methods achieve better results (Table 2), AISA consistently produces the best DW value and
greater stability compared to the Rao-1 technique. The two convergence curves are illustrated in Figure

2(b), where it is clear that Rao-1 becomes trapped in a local optimum before converging to the best

value.
Table 1. Comparison of results across 15 runs with fixed population size
and 30 iterations.
I |4 S F , Avg
Al . .
g0 4 V) (cm/min) (cm/min) best (Min) worst (Max) Mean Std (%)
R?O_ 424.688 30.178  20.000 204.568 17.722 22.300 19.448 1.2930e+00 91.496
AISA 415.045 29.281  19.998 232.254 17.088 17.478 17.224 1.0355e-01 99.211
Table 2. Comparison of results across 15 runs with fixed population size
and 50 iterations.
I %4 S F . Avg
Al . .
g0 A W) (cm/min) (cm/min) best (Min) worst (Max) Mean Std (%)
R?O_ 406.720 29.478  20.000 218.364 17.232 20.961 19.337 1.0590e+00 89.371
AISA 414982 29317 19.999 226.972 17.065 17.146 17.107 2.2067e-02 99.752

3.2 Second case study

In this case, we investigate the effect of varying the population size on the optimization performance.
The number of iterations is fixed at MaxIt = 100, while the population size (PopSize) is initially set to

30 and then increased to 50. Each algorithm is executed independently over 30 runs to ensure the
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consistency of results and to provide a robust comparison of performance under different population

sizes. “Avg” denotes the average success rate (%) across all runs.

In the second case study, the results for minimizing DW with varying population sizes (PopSize) are
summarized in Table 3 and Table 4, with convergence trends shown in Figure 3. As observed in Table
3, the AISA algorithm achieves the lowest DW value at 17.062 mm, demonstrating superior
optimization performance over the Rao-1 method. The statistical analysis further supports AISA's
advantage, as it presents a lower standard deviation (Std), indicating enhanced stability and consistency
in reaching optimal solutions. Figure 3(a) shows the convergence patterns, where AISA’s convergence
is more consistent and faster compared to Rao-1, particularly as the population size increases. When
PopSize is raised from 30 to 50, both methods show improved DW minimization (Table 4); however,
AISA continues to outperform Rao-1 in both accuracy and robustness. In Figure 3(b), the convergence
curve of Rao-1 reveals instances of premature convergence, while AISA demonstrates a more effective

search, reaching lower DW values without becoming trapped in local optima.

(a) (b)
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@ D gt
18 | ]
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17 : : : * 17 : : : ‘
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Number of iterations Number of iterations
Figure 2. Convergence of BW values across: a) 30 iterations and b) 50 iterations.
Table 3. Comparison of results across 30 runs with fixed iterations and 30
population size.
Algo I % S F best (Min) worst (Max) Mean Std Avg
(4 W)  (em/min) (cm/min) (%)
Rao-1 410.141 28.856 20.000 243.996 17.385 20.769 19082 8.2211e-01 91.268
AISA 416.204 29.332 19.999 227.060 17.062 17.096 17066 6.0073e-03 99.978
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Table 4. Comparison of results across 30 runs with fixed iterations and 50

population size.

Algo I 4 S F best (Min) worst (Max) Mean Std Avg
4 V) (em/min) (cm/min) (%)
Rao-1 402.472 29.193 20.000 231.756 17.306 20.370 18.764 8.5351e-01 92.413
AISA 415.930 29.346 19.999 226.750 17.063 17.078 17.066 2.8177e-03 99.982
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Figure 3. Convergence of BW values across: a) 30 population size and b) 50 population size.

3.3 Discussion

The numerical results demonstrate that AISA consistently outperforms Rao-1 across all scenarios. For
instance, in the first case study with 30 iterations, AISA achieved a minimum bead width of 17.088
mm, compared to 17.722 mm for Rao-1, representing an improvement of approximately 3.6%. Under
50 iterations, AISA further reduced the bead width to 17.065 mm, a 4.0% improvement over Rao-1’s
17.232 mm. Additionally, the average success rate of AISA exceeded 99%, compared to 91-92% for

Rao-1, confirming a performance gain of nearly 8% in solution reliability.

The convergence behavior shown in Figure 2 highlights that Rao-1 becomes trapped in a local
optimum, whereas AISA continues progressing toward better solutions. This results contributes

significantly to the algorithm’s robustness against local entrapment.

75



Islamic University Journal of Applied Sciences VII, (II), (2025) 68-78

AISA outperforms Rao-1 due to its adaptive balance between exploration and exploitation. The
integration of three identity-based behaviors—feature selection, role model imitation, and undesirable
trait adoption—allows AISA to both exploit promising regions and introduce diversity to escape local
optima. In contrast, Rao-1 relies on deterministic updates with limited diversity mechanisms, making

it more prone to premature convergence in complex search spaces.

While this work compares AISA only with the Rao-1 algorithm, we acknowledge that other
metaheuristics, such as the Whale Optimization Algorithm [5] and Grey Wolf Optimization [9], have
also demonstrated strong performance in welding parameter optimization. Future studies will
incorporate these algorithms with and other human-inspired algorithms (e.g., Cultural Algorithms,
Social Group Optimization) as additional benchmarks to further validate AISA’s effectiveness across

a broader range of optimization techniques.

3. Conclusion

This study demonstrates the effectiveness of the AISA in optimizing critical parameters within the
SAW process. By minimizing bead width, AISA proved to be a robust and adaptable Al-driven
solution, effectively navigating the complex relationships among welding parameters. Comparative
analysis with the Rao-1 algorithm confirms that AISA delivers superior accuracy in parameter
optimization, especially under varying population sizes and iteration settings. This work highlights the
growing significance of artificial intelligence in enhancing manufacturing precision and efficiency,
laying the groundwork for future research to explore Al-driven optimization across broader industrial
applications. Key findings of this study include:
o AISA consistently achieved a minimum bead width of 17.06 mm, outperforming Rao-1 (17.23
mm) under similar conditions.
o The algorithm demonstrated high stability, with an average success rate exceeding 99%,
representing an 11-12% improvement over Rao-1.
o The tri-behavioral structure of AISA effectively balanced exploration and exploitation,
avoiding local optima and ensuring robust convergence.
o The algorithm showed scalability, performing effectively under various population sizes and
iteration counts.
o Future work may include experimental validation, multi-objective, comparison with other
recent algorithms, and integration with IoT-based real-time monitoring systems for adaptive

welding control.
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Nomenclature and Abbreviations

Symbol / Description

Abbreviation

Al Artificial Intelligence

AISA Adolescent Identity Search Algorithm (human-inspired metaheuristic)
Avg Average Success Rate (%) — a measure of algorithm stability across runs
BW Bead Width (mm) — primary welding quality metric minimized

CA Cultural Algorithm

DW Bead Width (alternative notation in tables)

SAW Submerged Arc Welding

SGO Social Group Optimization

WOA Whale Optimization Algorithm

MaxIt Maximum Iterations — total number of algorithm iterations

PopSize Population Size — number of candidate solutions per iteration

Std Standard Deviation — variation in optimization results

GWO Grey Wolf Optimization

HAZ Heat-Affected Zone

F Wire Feed Rate (cm/min) — filler wire feeding rate

1 Welding Current (A) — process parameter affecting heat input

n Degree of Chebyshev polynomial used in orthogonal mapping

S Welding Speed (cm/min) — travel speed of the torch

Ty, 7313 Stochastic coefficients used in AISA update equations, uniformly sampled € [0,1]
Ty Random selector determining which behavioral case is applied in AISA
Ty Chebyshev polynomial of degree k, used in orthogonal mapping

|4 Arc Voltage (V') — parameter affecting arc stability and bead shape

X; Position vector of the j** individual in the population

x* Optimal trait vector representing the best solution

Xrm Role model vector selected for imitation in Case 2

Xq Undesirable trait vector chosen from low-performing individuals in Case 3
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