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Abstract 

In this work, we present an optimal reduced order nonlinear dynamic model for proton exchange 

membrane fuel cell (PEMFC) using the minimization of error between original and reduced order 

models via (L1, H2, H∞) norms synergy optimized with biogeography-based optimization (BBO) 

Algorithm. The data necessary to form the autoregressive exogenous (ARX) artificial neural network 

(ANN) model are generated by the simulation of the dynamic model of the nonlinear PEMFC500w 

differential equations to extract space state matrices values. This approach is compared with Balanced 

Truncation (BT) model reduction method and illustrated through simulation results.  
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1. Introduction 

Model order reduction intends to decrease the calculation difficulty such as reproduction of significant 

dynamical  and control systems at the same time maintaining major performances of the original 

system. Specifically, the use of low order models lead to the following desired properties like simple 

design and analysis, computational advantage and simplicity of simulation. The first technique of 

model reduction is the model study by state space procedures presented by Davison in 1966 [1]. Moore 

in 1981designed the theory of balancing, that directed to the well known technique of estimate by 

unbiased truncation [2]. Though, Moore’s advance still endure from stability. Wilson in [3-4] employs 

an H2 norm model reduction approach based on the minimization of the integral squared impulse 

response error among the complete and reduced order models. In 2006,Gugercin et al. [5] suggested 

an iterative rational Krylov approach (IRKA) for optimal H2 model reduction. In 2010, Bunse-

Gerstner et al.[6] proposed an H2 optimal interpolation used for big size discrete dynamical multiple 

input, multiple output (MIMO) systems. Lately, Panda et al. [7] applied a particle swarm optimization 

Algorithm to achieve a reduced-order model of SISO complex linear structures. Also, Du et al. [8] 

employed a Genetic Algorithm to constrain H2 model reduction technique intended to MIMO delay 

models. Fuel cells have become a very large field of research to be a new source of energy for several 

uses, varying from power generators to mobile applications due to their viability, efficiency and 

robustness. The proton exchange membrane fuel cell (PEMFC) technology is rapidly being developed.  

In this work, we want to make a complete assessment and comparison of ANN-BBO based approach 

and standard BT method for optimal model reduction of PEMFC500w system as a discrete MIMO 

complex model. Moreover, we consider hybrid (L1, H2 and H∞) criteria of our model reduction 

problems being studied to get a better compromised reduced model. 

 

2. PEMFC 500W State-space Modelling  

The fuel cell output voltage is an important part of its modeling. It is the potential of the cell obtained 

in an open circuit thermodynamic balance (without load). At normal conditions of pressure and 

temperature, the Nernst equation of the electrochemical reaction potential𝐸𝑐𝑒𝑙𝑙of one cell is given by 

[9]: 

                            Ecell  = 𝐸0
𝐶𝑒𝑙𝑙 +  

𝑅𝑇

2𝐹
𝑙𝑛 (

𝑃𝐻2 (𝑃𝑂2)
0.5

𝑃𝐻2𝑂
)                                                              (1) 

where: 

 𝐸0 ∶ Reference potential 

https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Control_system
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R :  Gas constant (8.3143 J/[mol K]) 

T : Fuel cell temperature (K) 

F : Faraday constant (96487 C/mol) 

PH2 
: hydrogen pressure (atm) 

PO2
 : Oxygen pressure (atm) 

PH2O : Water pressure (atm) 

The open-circuit output voltage of the PEMFC is given as: 

                                     Eo.FC  = 𝑛𝑠. 𝐸0
𝐶𝑒𝑙𝑙 +  𝑛𝑠

𝑅𝑇

2𝐹
𝑙𝑛 (

𝑃𝐻2 (𝑃𝑂2)
0.5

𝑃𝐻2𝑂
)                                       (2) 

ns  is the number of cells 

The PEMFC dynamics is characterized by non-linear differential equations converted into state-space 

representation [9]. The net mole flow of oxygen, hydrogen and water at the cathode and at anode 

correspondingly is given by [10]: 

Let :    𝑥1 =  (𝑚𝑂2
)

𝑛𝑒𝑡
  , 𝑥2 =  (𝑚𝐻2

)
𝑛𝑒𝑡

  and     𝑥3 =  (𝑚𝐻2𝑂)
𝑛𝑒𝑡

 

                                     𝑥̇1  = (
−1

𝜆𝑐
) 𝑥1 + (

1

4𝜆𝑐𝐹
) 𝐼                                                                                    (3) 

                                     𝑥̇2 = (
−1

𝜆𝐴
) 𝑥2 + (

1

4𝜆𝐴𝐹
) 𝐼                                                                                    (4) 

                                     𝑥̇3 = (
−1

𝜆𝐶
) 𝑥3 + (

1

4𝜆𝐶𝐹
) 𝐼                                                                                    (5) 

The dynamic equations of the partial pressure of hydrogen and oxygen, and the rate of change of the 

fractional pressure of water is written based on an ideal gas law P.V = n.R.T as [11]: 

Let:    𝑥4 = 𝑇  , 𝑥5 = 𝑃𝐻2
 ,   𝑥6 = 𝑃𝑂2

    and     𝑥7 = 𝑃𝐻2𝑂 

   

                                          
𝑑𝑃𝐻2

𝑑𝑡
= (

𝑅𝑇

𝑉𝑎
) (𝑚𝐻2

)
in 

− (
𝑅𝑇

𝑉𝑎
) ⋅ (𝑚𝐻2

)
out 

− (
𝑅𝑇

𝑉𝑎
)

𝐼

2𝐹
                                    (6) 

 

Therefore,we have: 

                                      𝑥̇5  =2.ϴ1(𝑥4)𝑢𝑝𝐴 − 2ϴ1(𝑥4).𝑥5 −ϴ2(𝑥4).I                                                (7) 

Where: 

ϴ1(𝑥4) = (
𝑅. (𝑚𝐻2𝑜

). 𝑥4

𝑉𝑎. (𝑃𝐻2𝑂)
) 𝛳2(𝑥4) = (

𝑅𝑥4

2𝑉𝑎𝐹
) 

Similarly, the partial pressure of oxygen dynamic equation can expressed as:  𝑛𝑠. 𝐸0
𝐶𝑒𝑙𝑙 

                                      𝑥̇6  =2.ϴ3(𝑥4)𝑢𝑝𝑐 − 2ϴ3(𝑥4).𝑥6 −ϴ4(𝑥4).I                                                (8) 

Where:   
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ϴ3(𝑥4) = (
𝑅. (𝑚𝐻2𝑜

)
𝑚

𝑐
.  𝑥4

𝑉𝑐. (𝑃𝐻2𝑂)𝑚
𝑐 ) 𝛳4(𝑥4) = (

𝑅𝑥4

2𝑉𝑐𝐹
) 

Similarly The rate of water partial pressure variation is given as: 

                                         𝑥̇7  =2.ϴ5(𝑥7)𝑥4 + 2ϴ4(𝑥4).I                                                                 (9) 

Where :  

ϴ5(𝑥7) = (
𝑅. (𝑚𝐻2𝑜

)
𝑖𝑛

𝑐
(𝑃𝐻2𝑂

𝑖𝑛 − 𝑥7)

𝑉𝑐. (𝑃𝐻2𝑂)𝑛
𝑐 ) 

The net raise in the PEMFC temperature of the assembly is given by: 

                                        𝑥̇4  =
1

𝑀𝑓𝑐𝐶𝑓𝑐
(𝑥̇8 − 𝑥̇9 − 𝑥̇10)                                                                         (10) 

Where:   Mfc    is Total mass of PEMFC stack (kg) 

Cfc is Specific heat capacity of PEMFC stack [J/(mole.K)] 

                                         𝑥̇8  = 𝛳6(𝑥4 , 𝑥5 , 𝑥6 , 𝑥7). 𝐼                                                                           (11) 

Where: 

𝛳6(𝑥4 , 𝑥5 , 𝑥6 , 𝑥7) = [𝑛𝑠
𝛥𝐺

2𝐹

0

−
𝑛𝑠𝑅𝑥4

2𝐹
𝑙𝑛 (

𝑥5. 𝑥6
0.5

𝑥7
) 

                                     𝑥̇9  = 𝛳7(𝑥4 , 𝑥5 , 𝑥6 , 𝑥7). 𝐼                                                                          (12) 

 

With I is stuck current: 

𝛳7(𝑥4 , 𝑥5 , 𝑥6 , 𝑥7) = 𝑛𝑠[𝐸0
𝐶𝑒𝑙𝑙 +

𝑅𝑥4

2𝐹
𝑙𝑛(

𝑥5. 𝑥6
0.5

𝑥7
) − 𝑉𝐴𝑐𝑡 − 𝑉𝐶𝑜𝑛𝑐 − 𝑉0] 

                                         𝑥̇10  = [ℎ𝑠𝑛𝑠𝐴𝑠]. 𝑥4 − [ℎ𝑠𝑛𝑠𝐴𝑠]. 𝑢𝑇𝑅                                                                             (13) 

 

Replacing equations (2.11), (2.12) and (2.13) into equation (2.10), we can get : 

                                         𝑥̇11 =[
−ℎ𝑠𝑛𝑠𝐴𝑠

𝑀𝑓𝑐𝐶𝑓𝑐
]. 𝑥4 − 𝛳7(𝑥4 , 𝑥5 , 𝑥6 , 𝑥7)I + [

−ℎ𝑠𝑛𝑠𝐴𝑠

𝑀𝑓𝑐𝐶𝑓𝑐
] . 𝑢𝑇𝑅                 (14) 

Where:              𝛳8(𝑥4 , 𝑥5 , 𝑥6 , 𝑥7) = 𝑛𝑠[
2

𝑀𝑓𝑐𝐶𝑓𝑐
𝐸0

𝐶𝑒𝑙𝑙 +
𝑅𝑥4

𝐹𝑀𝑓𝑐𝐶𝑓𝑐
𝑙𝑛(

𝑥5.𝑥6
0.5

𝑥7
) − 𝑉𝐴𝑐𝑡 − 𝑉𝐶𝑜𝑛𝑐 − 𝑉0] 

 

In general, the state space model of the PEMFC system is given as: 

                                       {

𝑥 ̇ (𝑡) = 𝐴(𝜃). 𝑥(𝑡) +  𝐵(𝜃). 𝑢(𝑡) + 𝐾(𝜃). 𝑤(𝑡)

𝑦(𝑡) = 𝐶(𝜃). 𝑥(𝑡) +  𝑣(𝑡)

𝑥0(𝑡) =  𝑥0

                                 (15) 
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𝑥̇(𝑡)are states of system, u(t) and y(t) are input,  output of system correspondingly, w(t) is the 

disturbance input, v(t) is  the measurement noise, A the state matrix, B the input matrix, C the output 

matrix and K the disturbance matrix. 

 

3. PEMFC ARX -ANN Modelling  

For modeling the nonlinear states equations of a PEM500W fuel cell using ANN, we propose an 

identification approach for identifying dynamic system model from measured input-output data. To 

represent nonlinear system dynamics, we can estimate nonlinear autoregressive exogenous (ARX) 

models with tree-partition network. ARX models describe nonlinear structures using a parallel 

combination of nonlinear and linear blocks [12]. The nonlinear and linear functions are expressed in 

terms of variables called regressors. Several nonlinear estimators can be used such as wavelet network, 

sigmoid network, tree partition, custom network, and neural network. In this study, the performance 

of tree partition estimators is chosen due to the simplicity of its structure. 

 

Figure 1. Structure of Nonlinear ARX Models 

The output of the nonlinear model was computed by regressor values from the past and current input 

and past output data such as u(t),u(t-1),…y(t),y(t-1). In Figure 1, the block of nonlinearity estimator 

can include linear and nonlinear blocks in parallel as: 

                                          𝐹(𝑥) = 𝐿𝑇(𝑥 − 𝑟) + 𝑑 + 𝑔(𝒬(𝑥 − 𝑟))                                                  (16) 

Where x is the regression vector, r is the mean of the regressor x. (𝐿𝑇(𝑥) + 𝑑) is the block linear 

function output and d is a scalar offset. 𝑔(𝒬(𝑥 − 𝑟)) represents the output of the nonlinear function 

block. Q is a projection matrix that makes the calculations well conditioned. The exact form of F(x) 

depends on the choice of the nonlinearity estimator. 
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4. Optimal hybrid ( L1, H2, H∞) norms-based model reduction 

4.1   Problem statement 

The purpose of model order reduction is to replace a large model by a smaller one, which preserves 

the essential behavior of the original model. For the systems considered in this work, it can be stated 

as follows: we have a state space model with identifiable coefficients (a disturbance element) given by 

the matrix K with initial state values given by the vector x0 and with sample time Ts. 

The discrete time state-space model of a system with input vector u, output vector y, and disturbance 

e takes the following equation [13]: 

                                           ∑N : {

𝑥𝑁(𝑘 + 1) =  𝐴𝑁𝑥(𝑘) +  𝐵𝑁𝑢(𝑘) + 𝐾𝑁𝑒(𝑘)

𝑦(𝑘) =  𝐶𝑁𝑥(𝑘) + 𝐷𝑢(𝑘) +  𝑒(𝑘)

𝑥(𝑜) = 𝑥0

                              (17) 

 

Where AN ∈ 𝕂N×Nis the state matrix, BN ∈ 𝕂N×m,  CN ∈ 𝕂p×N and KN ∈ 𝕂N×m. The vectors x (k) ∈

𝕂N, u(k)∈ 𝕂m and y(k)∈ 𝕂p represent the state, the input and the output of the discrete-time dynamical 

system, respectively. Often, the order N of the system is too big for solving various control, 

simulationand optimization problems. The aim of model order reduction is toconstruct a reduced order 

system: 

                                            ∑n : {

𝑥𝑛(𝑘 + 1) =  𝐴𝑛𝑥(𝑘) +  𝐵𝑛𝑢(𝑘) +  𝐾𝑛𝑒(𝑘)

𝑦(𝑘) =  𝐶𝑛𝑥(𝑘) + 𝐷𝑢(𝑘) +  𝑒(𝑘)

𝑥(𝑜) = 𝑥0

                              (18) 

Where  A𝑛 ∈ 𝕂𝑛×𝑛, B𝑛 ∈ 𝕂𝑛×𝑚, K𝑛 ∈ 𝕂𝑛×𝑚 , C𝑛 ∈ 𝕂p×n and 𝑛 ≪ N, 

The quality of this estimation is measured by the error between original system and reduced order 

system, i.e.: 

                                            ‖∑N − ∑𝑛‖ < 𝜀                                                                                   (19) 

For a specified precision and a appropriate norm. 

 

4.2 Biogeography Based Optimization (BBO) 

The biogeography based optimization (BBO) Algorithm is a new evolutionary algorithm originated by 

biogeography. As its name involves, the BBO algorithm has been inspired by biogeography [14-20]. 

The BBO algorithm imitates relations linking diverse types (habitants) situated in diverse habitats in 

terms of migration, evacuation, and transformation. In reality, this algorithm reproduces the progress 

of environment, considering movement and transformation among diverse physically alienated areas 

towards a stable state. 

Commonly talking, the ideas of the explore procedure of BBO are the same to those of further 

evolutionary algorithms, in which a set of arbitrary solutions is initially created. Subsequently, the 
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primary arbitrary solutions are assessed through a fitness function and after that progresses over a 

predefined number of iterations. The BBO algorithm is extremely like GA. Exploration agents in BBO, 

labeled habitats, work equally to chromosomes in GA.  

These regulation habitats, labeled habitants, are comparable to genes in GA. The related fitness cost 

for every habitat in BBO is called the Habitat Suitability Index (HSI). Depending on the HSI of 

habitats, the habitants are capable to travel starting from a location to another one. In other terms, 

habitats can progress based on their HSI as: 

1. Habitants existing in habitats with elevated HSI are further probable to immigrate to habitats with 

small HSI. 

2. Habitants situated in low-HSI habitats are further flat to let movement of new habitants from habitats 

with high HSI. 

In the BBO algorithm, every habitat is given three rates: immigration (λk), emigration (μk), and 

mutation. These rates are determined based on the number of habitants as below: 

𝜇𝑘 =
𝐸 × 𝑛

𝑁
𝜆𝑘 = 𝐼 ×

1 − 𝑛

𝑁
 

Where n is the habitant number, N is the highest amount of habitants, E is the greatest emigration 

speed, and I designates the greatest immigration speed. Figure.2 shows emigration and immigration 

rates. It demonstrates that the probability of emigration is in relation with the number of habitats. Also, 

the immigration probability is inversely relative to the number of habitants. The mutation rate of BBO 

is furthermore a function of the number of habitants and given by:  

                                                            𝑚𝑛 = 𝑀 × (1 −
𝑝𝑛

𝑝𝑚𝑎𝑥
)                                                         (20) 

Where M is an initial value for mutation defined by the user, pn is the mutation probability of the n-th 

habitat, and pmax=arg max(pn), n=1,2,…,N and pmax=arg max(pn), n=1,2,…,N. 

 

 

Figure 2. Emigration (μk) and immigration (λk) curves 
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To resume, the BBO algorithm can be presented as follows: 

1. Define the migration probability and mutation probability; 

2. population initialization; 

3. Ri and Re calculation of all candidate through the population; 

4. Modification of the selected islands based on the immigration rate; 

5. Choice of the island from which the HSI is to be emigrated based on the emigration rate. 

6. Randomly select an HSI from the chosen island at step5. 

7. Mutation based on each island mutation probability; 

8. The objective function computation for each individual island. If the objective function is not 

fulfilled, go to step three.  

 

4.3 BBO based model order reduction  

In this paper, PEMFC500w model reduction problem is investigated using BBO Algorithm, 

minimizing the hybrid (L1, H2, H∞) norm.  

                                                   Let:     E(z) = GN(z) – Gn(z)                                                  (21) 

Using different norms leads to diverse approximations since diverse norms desire diverse 

characteristics of the system. Though, it is sometimes attractive to get a decreased order model by 

means of some attractive characteristics that might not be attainable through using a particular norm 

only. Hence, we propose the next hybrid norm condition to get improved compromised reduced order 

models [21]: 

                                                   ‖𝐸‖ℎ𝑦𝑏𝑟𝑖𝑑 = 𝛼 ‖𝐸‖2 + 𝛽‖𝐸‖∞ +  𝛾‖𝐸‖𝐿1                                 (22) 

where  ,𝛽  and 𝛾 are constants 

Then the H2 norm is defined as: 

                                                   ‖𝐸‖2 = {
1

2𝜋
∑ |𝐸(𝑘)|2∞

1 }
1/2

                                                (23) 

And theH∞  norm is defined as: 

                                                   ‖𝐸‖∞ = max|𝐸(𝑘)|                                                                              (24) 

The  HL1 norm is given by: 

                                                   ‖𝑒‖𝐿1 =  ∑ |𝑦𝑁(𝑘) −  𝑦𝑛(𝑘)|                                                       ∞
0      (25) 

Where e(k) is the impulse response difference between the original system and the reduced system: 

                                                    𝑒(𝑘) = 𝑦(𝑘) − 𝑦𝑛(𝑘)                                                                  (26) 
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5. Simulation Results 

The parameters of the used PEMFC model are specified in the following Table 1. A nonlinear state 

space model of the PEMFC, developed previously, is simulated in MATLAB software.  

 

Table 1. Parameters of the PEMFC Model [10] 

𝐴s = 3.2. 10−2 m2 𝑀𝑓 = 44 kg 

𝑎 = −3.0810−3 V/K (𝑚𝐻20)𝑖𝑛
𝑎 = 8.614. 10−5 mol/s 

𝑎0 = 1.3697 V (𝑚𝐻20)𝑖𝑛
𝑐 = 8.614. 10−5 mol/s 

𝑏 = 9.72410−5 V/K 𝑛𝑠 = 48 

𝐶𝑘 = 500 J(moLK) (𝑃𝐻2𝑂)
in 

= 2 atm 

𝐶 = 10 F 𝑅 = 8.31 J/(mol/K) 

𝐸0
Cell = 1.23 V 𝑅𝑐

0 = 0.28Ω 

𝑒 = 2 𝑉𝑎 = 10−3 m3 

𝐹 = 96487C/mol 𝑉𝑐 = 10−3 m3 

Δ𝐺0 = 2372.103 J/mol 𝜆𝐴 = 60 s 

ℎs = 37.5 W/(𝑚2𝐾) 𝜆𝑐 = 60 s 

𝐾𝐼 = 1.87. 10−3Ω/A (𝑃𝐻20)𝑖𝑛
𝑎 = 1 atm 

𝐾𝑇 = −237.10−3Ω/𝐾 (𝑃𝐻20)𝑖𝑛
𝑐 = 1 atm 

 

In order to find the V-I characteristics of the PEMFC, the model is simulated via nonlinear state space 

equations with input variables:  upa= 60atm ,upc= 30atm and uT=308 k . Figures 3 and 4 show the 

results close match to simulation results obtained by the experimental results of the Avista Labs SR-12 

(500W) PEMFC stack in [11]. The output voltage response of the PEMFC model is presented in Figure 

3. The output voltage diminishes from about 38.43 to 25.88 volts. 
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Figure 3. V-I Characteristics of the PEMFC Model      

 

        Figure 4. Experimental results of the Avista Labs SR-12 (500W) 

The P-I characteristics of the PEMFC model are given in Figure 5. The maximum output power is 

attained at a position near to the rated current of the fuel cell (25A), but not precisely at the rated 

current. The PEMFC leaves in the concentration area close to the rated current value, where the output 

power decreases with the rising load current owing to the potential decline in the PEMFC’s output 

voltage. 
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Figure 5. P-I Characteristics of the PEM Fuel Cell Model 

After nonlinear equations simulation step of a 500-W proton exchange membrane (PEM) fuel cell, in 

order to get the voltage and current outputs, we identifieda dynamic system model from measured 

input-output data using nonlinear ARX models with tree-partition network.Then we linearizethis 

model to get a state space model with identifiable coefficients (a disturbance element) given by the 

matrix K with initial state values given by the vector X and with sample time Ts =0.2. 

 

 

                

Ad = [0.9004 0     −0.2470        0  −0.5076 −0.5076 0.3498 0.3498
0.2859 0 −0.4406 0 1.1560 1.1560 −0.7268 −0.7268

10 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 10 0 0 0
0 0 0 0 0 10 0 0]

 

  

              Bd = [0     0; 0     0; 0     0; 0     0; 1     0; 0     1; 0     0; 0     0]; 

 Cd = [0.9004         0   -0.2470         0   -0.5076   -0.5076    0.3498    0.3498; 

           0.2859         0   -0.4406         0    1.1560    1.1560   -0.7268   -0.7268] 

 Dd = [0     0; 0    0] 

 Kd = [1     0; 0     1; 0     0; 0     0;   0     0; 0     0; 0     0; 0     0] 

 Xd = [0;  0;   0;   0;   0;   0;   0;   0] 

 Eigen values: 𝜆1 = 0,𝜆2 = 0, 𝜆3,4 = 0.4502 ±  0.2104𝑖, 𝜆5 = 0 , 𝜆6 = 0 , 𝜆7 = 0 , 𝜆8 = 0 

 

With the parameters of the BBO Algorithm utilized are: population size=100, the initial population of 

candidate solutions is generated randomly, mutation probability is set to 0.04, the number of nodes 

HSI is 20, the maximum immigration (𝜆) and emigration (µ) rates are 0.75 and 0.75. The termination 
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criterion is a function evaluation limit set at 10-20 attained at 600 runs; the temporary population is so 

that all emigrating variables may initiate from the population that is put at starting of the generation. 

Hence, the results of (L1, H2,Hinf) hybrid norm model reduction with 𝛼 = 𝛽 = 𝛾=1: 

Ar = [0.21106     0.044441      0.14361; 1.3189      -0.3388      0.89948; -0.36742     -0.19781    -0.089514] 

Br = [0.60513      0.96219; 0.0028169    -0.052779; 0.72425    -0.013944] 

Cr = [-0.54119     -0.04784     -0.20932;   1.1679     -0.67317      0.62251] 

Dr = [-0.014372   -0.0018601; 0.0086205    -0.011826] 

Kr = [0.12484       2.5473; 0.71806      -2.6324; 0.16301     -0.68393] 

xr(0) = [3.0308;  -1.6829;  0.18331] 

Eigenvalues: 𝜆1 =  -0.1938,  𝜆2,3 = −0.0117 ±  0.3276𝑖 

 

Table 2 shows the results comparison of the different the relative norms of model error obtained by 

ANN-BBO and BT approaches with model order reduction n=3: 

 

Table 2. Comparison of the relative norms of error systems obtained by ANN-

BBO and BT approaches 

 

norms 
ANN-BBO  

 
BT method 

H2 norm 
 

0.0587 

0.0493 

L1_Norm(:,:,1) = 

[0.2862    0.0456] 

L1_Norm(:,:,2) = 

[0.2306     hybrid 

norm(:,:,1) = [0.3942    

0.1536] 

hybrid norm (:,:,2) = 

[0.3385    0.1626] 

 
0.0837 

0.0656 

L1_Norm(:,:,1) =  [0.2282    

0.0786] 

L1_Norm(:,:,2) =  0.2282    

0.0786] 

hybrid norm (:,:,1) = 

[0.3776    0.2279] 

hybrid norm(:,:,2) = 

[0.3776    0.2279] 

Hinf norm 
 

L1 norm 
 

(L1, H2, Hinf) 

hybrid norm 

 

 

To better evaluate the quality of approximants, we trace the temporal responses in Figures 6-9 blow, 

and the frequency responses in Figures 10-11 for PEMFC500W original system and the reduced order 

model by the ANN-BBO approach and BT method of dimension n=3. 
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Figure 6. Impulse response by BT approach 

 

Figure 7. Impulse response by ANN-BBO approach 
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Figure 8.  Step response by BT approach 

 

Figure 9.  Step response by ANN-BBO approach 
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Figure 10. Frequency response by BT approach 
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Figure 11. Frequency response by ANN-BBO approach 
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Figure 12. Objective function evolution with runs 

 

We observe in Table.2 that the relative error norms of H2-norm and Hinf - norm systems obtained by 

ANN-BBO approach are better than those obtained by BT method. But results are different in cases: 

L1-norm and hybrid (L1,H2, Hinf) norms, in which, we find BT method in first output with inputs of 

hydrogen and oxygen pressures better than ANN-BBO approach. In the contrary, results in the second 

output show better performance of ANN-BBO approach compared to BT method. 

Figures. 6–11 illustrate the impulse responses, step responses and frequency responses of all models, 

correspondingly. Notice that the impulse responses of the reduced-order model via ANN-BBO is 

greatly close to those of the original model than using BT method for all outputs. While in step 

responses, the first output of the reduced-order model by BT method match those of the original model 

than ANN-BBO approach. The frequency response comportment of the reduced-order model by BT 

method  strictly look like that of the original model than ANN-BBO approach with a little error at 

elevated frequencies. On the other hand, because the majority of physical systems function at low 

frequencies, this elevated frequency error can be unobserved. Evolution of system error represented 

by an objective function minimized by BBO algorithm is illustrated in Figure 12.  

 

6. Conclusion 

We have studied  in this paper an optimal order reduction of complex MIMO nonlinear dynamic model 

of PEMFC via (L1, H2, H∞) norms synergy optimized with biogeography based optimization (BBO) 

Algorithm. The system is modeled using an autoregressive (ARX) model simulated by an artificial 

neural network (ANN). A comparison is accomplished among BT approach. The results shows us the 

use of this novel optimal approach in models reduction to the best solution. But it has one drawback 
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found in its long time achieving the best solution or optimum solution compared to BT approach. The 

future goal is to realize this optimal controller in hardware implementation. Then, interface to a DC/AC 

converter for our laboratory research experiments. 
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